Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylpalladium intermediate

Aryl- or alkenylpalladium comple.xcs can be generated in situ by the trans-metallation of the aryl- or alkenylmercury compounds 386 or 389 with Pd(Il) (see Section 6). These species react with 1,3-cydohexadiene via the formation of the TT-allylpalladium intermediate 387, which is attacked intramolecularlv by the amide or carboxylate group, and the 1,2-difunctionalization takes place to give 388 and 390[322]. Similarly, the ort/trt-thallation of benzoic acid followed by transmetallation with Pd(II) forms the arylpalladium complex, which reacts with butadiene to afford the isocoumarin 391, achieving the 1,2-difunctionalization of butadiene[323]. [Pg.73]

The reaction of alkenyl mercurials with alkenes forms 7r-allylpalladium intermediates by the rearrangement of Pd via the elimination of H—Pd—Cl and its reverse readdition. Further transformations such as trapping with nucleophiles or elimination form conjugated dienes[379]. The 7r-allylpalladium intermediate 418 formed from 3-butenoic acid reacts intramolecularly with carboxylic acid to yield the 7-vinyl-7-laCtone 4I9[380], The /i,7-titisaturated amide 421 is obtained by the reaction of 4-vinyl-2-azetidinone (420) with an organomercur-ial. Similarly homoallylic alcohols are obtained from vinylic oxetanes[381]. [Pg.81]

Butenoic acid and 4-pentenoic acid (42) react with alkenyl halides or tri-flates to afford 7-alkenyl-7-lactones and the ( -alkenyl-5-valerolactone 44 via the TT-allylpalladium intermediate 43 formed by the elimination of Pd—H and its readdition in opposite regiochemistry using a phosphine-free Pd cata-lyst[43]. [Pg.134]

In the synthesis of morphine, bis-cyclization of the octahydroisoqtiinolinc precursor 171 by the intramolecular Heck reaction proceeds using palladium trifluoroacetate and 1,2,2,6,6-pentamethylpiperidine (PMP). The insertion of the diene system forms the rr-allylpalladium intermediate 172, which attacks the phenol intramolecularly to form the benzofuran ring (see Section 1.1.1.3). Based on this method, elegant total syntheses of (-)- and (+ )-dihydrocodei-none and (-)- and ( + )-morphine (173) have been achieved[141]. [Pg.153]

Asymmetric Heck reaction of the conjugated diene 184 and subsequent acetate anion capture of the rr-allylpalladium intermediate afforded 185 in 80% ee. which was converted into the key intermediate 186 for the capnelle-... [Pg.155]

In the reaction of aryl and alkenyl halides with 1,3-pentadiene (248), amine and alcohol capture the 7r-allylpalladium intermediate to form 249. In the reactions of o-iodoaniline (250) and o-iodobenzyl alcohol (253) with 1,3-dienes, the amine and benzyl alcohol capture the Tr-allylpalladium intermediates 251 and 254 to give 252 and 255[173-175]. The reaction of o-iodoaniline (250) with 1,4-pen tadiene (256) affords the cyclized product 260 via arylpalladiuni formation, addition to the diene 256 to form 257. palladium migration (elimination of Pd—H and readdition to give 258) to form the Tr-allylpalladium 259, and intramolecular displacement of Tr-allylpalladium with the amine to form 260[176], o-Iodophenol reacts similarly. [Pg.164]

The TT-allylpalladiLim complexes formed as intermediates in the reaction of 1,3-dienes are trapped by soft carbon nucleophiles such as malonate, cyanoacctate, and malononitrile[ 177-179). The reaction of (o-iodophenyl-methyl) malonate (261) with 1,4-cyclohexadiene is terminated by the capture of malonate via Pd migration to form 262. The intramolecular reaction of 263 generates Tr-allylpalladium, which is trapped by malononitrile to give 264. o-[odophenylmalonate (265) adds to 1,4-cyciohexadiene to form a Tr-allylpalladium intermediate via elimination of H—Pd—X and its readdition, which is trapped intramolecularly with malonate to form 266)176]. [Pg.165]

When allene derivatives are treated with aryl halides in the presence of Pd(0), the aryl group is introduced to the central carbon by insertion of one of the allenic bonds to form the 7r-allylpalladium intermediate 271, which is attacked further by amine to give the allylic amine 272. A good ligand for the reaction is dppe[182]. Intramolecular reaction of the 7-aminoallene 273 affords the pyrrolidine derivative 274[183]. [Pg.166]

The dienyne 394 undergoes facile polycyclization. Since the neopentylpalla-dium 395 is formed which has no hydrogen /J to the Pd after the insertion of the disubstituted terminal alkene, the cyclopropanation takes place to form the tt-allylpalladium intermediate 396, which is terminated by elimination to form the diene 397(275]. The dienyne 398 undergoes remarkable tandem 6-e. o-dig. 5-cxo-trig. and -exo-trig cyclizations to give the tetracycle 399 exclu-sively(277]. [Pg.181]

The stereoselective allylic rearrangement of the allylic alcohol 798 catalyzed by PdCl2(MeCN)2 and Ph3P under Mitsunobu inversion conditions is explained as proceeding via a rr-allylpalladium intermediate[496]. The smooth rearrangement of the allylic p-tolylsulfone 799 via a rr-allylpalladium intermediate is catalyzed by a Pd(0) catalyst[497]. [Pg.400]

Pd(Ph3P)4, dimedone, THF, 88-95% yield. The catalyst is not poisoned by the presence of thioethers such as methionine. Diethyl malonate has also been used as a nucleophile to trap the TT-allylpalladium intermediate and regenerate Pd(O)." ... [Pg.527]

As described in Section 2.3.2, vinylaziridines are versatile intermediates for the stereoselective synthesis of (E)-alkene dipeptide isosteres. One of the simplest methods for the synthesis of alkene isosteres such as 242 and 243 via aziridine derivatives of type 240 and 241 (Scheme 2.59) involves the use of chiral anti- and syn-amino alcohols 238 and 239, synthesizable in turn from various chiral amino aldehydes 237. However, when a chiral N-protected amino aldehyde derived from a natural ot-amino acid is treated with an organometallic reagent such as vinylmag-nesium bromide, a mixture of anti- and syn-amino alcohols 238 and 239 is always obtained. Highly stereoselective syntheses of either anti- or syn-amino alcohols 238 or 239, and hence 2,3-trans- or 2,3-as-3-alkyl-2-vinylaziridines 240 or 241, from readily available amino aldehydes 237 had thus hitherto been difficult. Ibuka and coworkers overcame this difficulty by developing an extremely useful epimerization of vinylaziridines. Palladium(0)-catalyzed reactions of 2,3-trons-2-vinylaziri-dines 240 afforded the thermodynamically more stable 2,3-cis isomers 241 predominantly over 240 (241 240 >94 6) through 7i-allylpalladium intermediates, in accordance with ab initio calculations [29]. This epimerization allowed a highly stereoselective synthesis of (E) -alkene dipeptide isosteres 243 with the desired L,L-... [Pg.64]

For unsymmetrical allylic systems both the regiochemistry and stereochemistry of the substitution are critical issues. The palladium normally bonds anti to the acetate leaving group. The same products are obtained from 2-acetoxy-4-phenyl-3-butene and 1 -acetoxy-l-phenyl-2-butene, indicating a common intermediate. The same product mixture is also obtained from the Z-reactants, indicating rapid ,Z-equilibration in the allylpalladium intermediate.118... [Pg.713]

Recently, we have observed a process where the palladium apparently migrates from a vinylic to an aryl to an allylic position all in one reaction (Scheme 27).23 This provides a unique new way to produce 7r-allylpalladium intermediates, which have proven very valuable as intermediates in organic synthesis. [Pg.445]

Subsequent Heck cyclization and trapping of the allylpalladium intermediate by the diketopiperazine nitrogen led to efficient formation of protected spirotryprostatin B 326 (Scheme 24). [Pg.747]

The vinylcyclopropane 144, bearing two electron-withdrawing groups, undergoes the intermolecular palladium-catalyzed [3 + 2]cycloaddition reaction of the Jt-allylpalladium intermediate 145 with a,/ -unsaturated esters or ketones to provide a useful method for forming the cyclopentane ring of 146 [74], (Scheme 51)... [Pg.129]

Zhang236 has also reported a Pd(0)-catalyzed cyclization-arylation cascade of 1,6-enynes that proceeds via the formation of a 7r-allylpalladium intermediate and the subsequent Suzuki coupling, yielding adducts with stereo-defined exocyclic double bonds (Scheme 60). [Pg.329]

Arylative or silylative cyclizations of allenyl aldehydes or ketones have been reported (Equations (101) and (102)).459,459a The intermolecular process, that is, three-component coupling reaction of aldehydes, allenes, and arylboronic acids, is catalyzed by palladium as well (Equation (103)).46O 46Oa These reactions are proposed to proceed through nucleophilic attack of the allylpalladium intermediates to the carbonyl groups. [Pg.466]

Dimethyl-4-methylene-l,3-dioxolan-2-one reacts with isonitriles in the presence of a palladium catalyst to afford iminofurans (Equation (121)).480 Successive insertion of isonitriles to the carbon-palladium bond of 7r-allylpalladium intermediate is postulated. [Pg.470]

Palladium-catalyzed cyclic carboxylation of dienes can be utilized for the synthesis of lactones.2 Polymer-supported Pd catalyst could also be used for this reaction (Scheme 42).61 The reaction is initiated by dimerization of two molecules of diene to give a bis-7r-allylpalladium intermediate such as 123. The incorporation of C02 takes place at the internal position of an allyl unit to afford the 7r-allylpalladium carboxylate 124 which, after reductive elimination/ cyclization, yields the (5-lactone 121 (Scheme 43). [Pg.553]

The palladium-catalyzed multicomponent coupling reactions have attracted considerable interest.12,12a 12e A reaction using allylstannane 39 and allyl chloride 40 was applied to the three-component diallylation of benzylidenema-lonitrile and its congeners by Yamamoto et al 2 Analogous diallylation of isocyanate 41 was studied by Szabo et al. (Scheme 7).12a The reaction mechanism can be explained by formation of an amphoteric bis-allylpalladium intermediate 43 which undergoes an initial electrophilic attack on one of the allyl moieties followed by a nucleophilic attack on the other. [Pg.700]

The palladium(0)-catalyzed cyclization of amide-allenes via a carbopalladation has been developed by several groups. The reaction proceeds through the carbopalladation of the allene moiety with an organopalladium species (R-Pd-X), generated by oxidative addition of R-X to palladium(O), and subsequent reductive elimination of the resultant 7r-allylpalladium intermediate.47,47a 47f... [Pg.718]

Linear 1,3-dienes have also been subjected to the palladium-catalyzed asymmetric hydrosilylation (Scheme 12, Table 5). Reaction of 1-phenyl-l,3-butadiene 46a with HSiClj catalyzed by palladium-(/ )-(A)-PPFA 5a gave a mixture of regioisomeric allysilanes 47, and 48 and 49, in a ratio of 94 to 6, the major isomer 47 and the minor isomer 48 being 64% ee (S) and 30% ee (R), respectively (entry l).60 7r-Allylpalladium intermediate 50 was proposed for this hydrosilylation. Use of phenyldifluorosilane in place of trichlorosilane slightly improved the enantioselectivity (entry 8).58,61 Similar level of enantioselectivity (71-72% ee) was reported for the reaction using Ar-MOP ligand 37f (entry 11) and its dioctylated derivative 37g (entry 12).57a... [Pg.826]

An organic halide, RX (R = aryl or vinyl) adds oxidatively to Pd(0) species to form a RPdX species. An allene readily undergoes carbopalladation of the species to generate a jr-allylpalladium intermediate [3] in a highly regioselective manner. Finally, an allylic compound is produced by a nucleophile attack (Scheme 16.1). [Pg.925]

Three-component assembly of allenes, organic halides and arylboronic acids has been reported in which Suzuki coupling of a Jt-allylpalladium complex with an orga-noboronic acid is utilized (Scheme 16.26) [31], Addition of phosphorus ligands to the reaction mixture greatly decreases either the product yields or E/Z ratios. The decrease in E/Z ratio may be explained based on the fact that donor ligands readily promote anti-syn rearrangement of a Jt-allylpalladium species via a cr-allylpalladium intermediate. [Pg.935]


See other pages where Allylpalladium intermediate is mentioned: [Pg.159]    [Pg.164]    [Pg.295]    [Pg.297]    [Pg.299]    [Pg.300]    [Pg.318]    [Pg.324]    [Pg.339]    [Pg.358]    [Pg.378]    [Pg.402]    [Pg.438]    [Pg.569]    [Pg.572]    [Pg.85]    [Pg.129]    [Pg.668]    [Pg.309]    [Pg.465]    [Pg.700]    [Pg.702]    [Pg.718]    [Pg.825]    [Pg.397]    [Pg.868]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Allylpalladium

© 2024 chempedia.info