Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic amines synthesis

Davis FA, Song M, Augustine A. Asymmetric synthesis of trani -2,5-disubstituted pyrrohdines from enantiopure homo-allylic amines. Synthesis of pyrrolidine (—)-197B. J. Org. Chem. 2006 71(7) 2779-2786. [Pg.1205]

Hydroxylysine (328) was synthesized by chemoselective reaction of (Z)-4-acet-oxy-2-butenyl methyl carbonate (325) with two different nucleophiles first with At,(9-Boc-protected hydroxylamine (326) under neutral conditions and then with methyl (diphenylmethyleneamino)acetate (327) in the presence of BSA[202]. The primary allylic amine 331 is prepared by the highly selective monoallylation of 4,4 -dimethoxybenzhydrylamine (329). Deprotection of the allylated secondary amine 330 with 80% formic acid affords the primary ally-lamine 331. The reaction was applied to the total synthesis of gabaculine 332(203]. [Pg.334]

The formation of an enamine from an a,a-disubstituted cyclopentanone and its reaction with methyl acrylate was used in a synthesis of clovene (JOS). In a synthetic route to aspidospermine, a cyclic enamine reacted with methyl acrylate to form an imonium salt, which regenerated a new cyclic enamine and allowed a subsequent internal enamine acylation reaction (309,310). The required cyclic enamine could not be obtained in this instance by base isomerization of the allylic amine precursor, but was obtained by mercuric acetate oxidation of its reduction product. Condensation of a dihydronaphthalene carboxylic ester with an enamine has also been reported (311). [Pg.362]

Perhaps the most successful industrial process for the synthesis of menthol is employed by the Takasago Corporation in Japan.4 The elegant Takasago Process uses a most effective catalytic asymmetric reaction - the (S)-BINAP-Rh(i)-catalyzed asymmetric isomerization of an allylic amine to an enamine - and furnishes approximately 30% of the annual world supply of menthol. The asymmetric isomerization of an allylic amine is one of a large and growing number of catalytic asymmetric processes. Collectively, these catalytic asymmetric reactions have dramatically increased the power and scope of organic synthesis. Indeed, the discovery that certain chiral transition metal catalysts can dictate the stereo-... [Pg.343]

We now turn to the Takasago Process for the commercial synthesis of (-)-menthol (1),4 one of the most successful industrial applications of catalytic asymmetric synthesis. This exquisite synthesis is based on the BINAP-Rh(i)-catalyzed enantioselecdve isomerization of allylic amines, and has been in operation for the commercial production of (-)-menthol since 1984. [Pg.352]

Anderson CE, Donde Y, Douglas CJ, Overman LE (2005) Catalytic asymmetric synthesis of chiral allylic amines. Evaluation of ferrocenyloxazoline palladacycle catalysts and imidate motifs. J Org Chem 70 648-657... [Pg.173]

Jautze S, Seiler P, Peters R (2008) Synthesis of nearly enantiopure allylic amines by Aza-Claisen rearrangement of Z-configured allylic trifluoroacetimidates catalyzed by highly active ferrocenylbispalladacycles. Chem Eur J 14 1430-1444... [Pg.173]

Morpholine also gives the allyhc amine in high yield. The reaction is thought to involve a known hydridopaUadium-catalyzed isomerization of alkynes to aUenes followed by reaction of the latter with the hydridopalladium complex to give 1-phenyl-substituted q -allylpalladium complexes. These complexes react with amines affording the allylic amines. Primary amines give the diallylic amines. An intramolecular version has been developed for the synthesis of 2-(2-phenyl)-pyrroUdines and -piperidines [319]. [Pg.130]

The most important ruthenium-catalyzed domino process is based on a metathesis reaction. Nonetheless, a few other ruthenium-catalyzed processes have been employed for the synthesis of substituted 3,y-unsaturated ketones, as well as unsaturated y-lactams and allylic amines. [Pg.439]

Heterocycles can be employed as precursors for the synthesis of pyrazoles. Pyrazoles can be synthesized by three-membered ring substrates. For example, allyl amines 12 and pyrazoles 13 could be obtained by hydrazinolysis of 2-ketoaziridines 11 <06TL255>. Regioselective ring opening of 3-aryl-2-benzoyl-l,l-cyclopropanedicarbonitriles 14 with hydrazine provided a new process for the synthesis of 5-aryl-3-phenylpyrazoles 15 <06JHC495>. [Pg.210]

For the synthesis of heterocycles, an efficient strategy has been introduced utilizing the dual transition metal sequences (Scheme 6).11,lla The key issue is the compatibility of the two catalyst systems. Jeong et al. studied the one-pot preparation of bicyclopentenone 35 from propargylsulfonamide 33 and allylic acetate.11 This transformation includes two reactions the first palladium-catalyzed allylation of 33 generates an enyne 34 and the following Pauson-Khand type reaction (PKR) of 34 yields a bicyclopentenone 35. The success of this transformation reflects the right combination of catalysts which are compatible with each other because the allylic amination can be facilitated by the electron-rich palladium(O) catalyst and the PKR needs a Lewis-acidic catalyst. Trost et al. reported the one-pot enantioselective... [Pg.699]

Allylic amination is important for the solid-phase organic synthesis.15 The solid-phase allylic aminations are devised into the G-N bond formation on solid support and the deprotection of allyl ethers. As a novel deprotection method, the palladium-catalyzed cyclization-cleavage strategy was reported by Brown et al. (Equation (4)).15a,15b The solid-phase synthesis of several pyrrolidines 70 was achieved by using palladium-catalyzed nucleophilic cleavage of allylic linkages of 69. [Pg.703]

A novel procedure for the synthesis of an indole skeleton 81 was developed by Mori s group (Scheme 13).16e,16f Enantioselective allylic amination of 78 with A-sulfonated < r/ < -bromoaniline 79 followed by Heck cyclization of 80 provided chiral indoline 81. The treatment of a cyclohexenol derivative 78 with 79 in the presence of Pd2(dba)3-GHGl3 and ( )-BINAPO gave compound 80 with 84% ee in 75% yield. Total syntheses of (—)-tubifoline, (—)-dehydrotubifoline, and (—)-strychnine were achieved from compound 80. [Pg.703]

Isomerization of allylic amines is another example of the application of the BINAP complex. Rh BINAP complex catalyzes the isomerization of N,N-diethylnerylamine 40 generated from myrcene 39 with 76-96% optical yield. Compound (R)-citronellal (R)-42. prepared through hydrolysis of (R)-41, is then cyclized by zinc bromide treatment.49 Catalytic hydrogenation then completes the synthesis of (—)-menthol. This enantioselective catalysis allows the annual production of about 1500 tons of menthol and other terpenic substances by Takasago International Corporation.50... [Pg.354]

Oxidative phenolic coupling. Biosynthesis of the alkaloid narwedine (3) is known to involve oxidative phenolic coupling of norbelladine derivatives (1), but the usual oxidants for such coupling in vitro convert 1(R = H) into the oxomaritidine skeleton (4) rather than 3. A new biomimetic synthesis of 3 involves the palladacycle 2, formed by reaction of 1(R = CH3) with Li2PdCl4, which is known to form complexes with allylic amines or sulfides (8,176-177). Oxidation of 2 with thallium(III) trifluoroacetate effects the desired coupling to give 3. [Pg.142]

Shimizu and Tsuji [4] reported the first highly regioselective synthesis of 1,2-di-substituted allylic amines through capture of a Jt-allylpalladium complex by pyrrolidine (Scheme 16.2). This methodology has since been extended to a wide range of amines and allenes [5]. [Pg.926]

An efficient primary amine synthesis via iV-diisobutylaluminium imines has been described. A cyanide R CN (R1 = Bu, CsHn, Ph, 2-furyl or 2-thienyl) is treated with diisobutylaluminium hydride and the product is converted into the amine by reaction with an organomagnesium or organolithium compound R2M (R2 = Bu, t-Bu, allyl or benzyl)... [Pg.549]

For the synthesis of primary allylic amines, an allyl acetate, e.g. 175, is treated with the benzhydrylamine 176 (Ar = d-MeOCgFLt) in the presence of a catalytic amount of (Ph3P)4Pd and the product 177 is cleaved to the amine 178 with 88% formic acid186. [Pg.568]

A diverse group of secondary and tertiary amines are readily synthesized from the reaction of primary and secondary amines with allylic carbonates in the presence of preformed iridium metalacycles, but the direct synthesis of primary amines via iridium-catalyzed allylic amination requires the use of ammonia as a nucleophile. The asymmetric allylation of ammonia had not been reported until very recently, and it is not a common reagent in other metal-catalyzed reactions. Nonetheless, Hartwig and coworkers developed the reactions of ammonia with allylic carbonates in the presence of la generated in situ [89]. Reactions conducted in the initial work led exclusively to the products from diallylation (Scheme 16). Further advances in... [Pg.191]

The use of ethylene adduct lb is particularly important when the species added to activate catalyst la is incompatible with one of the reaction components. Iridium-catalyzed monoallylation of ammonia requires high concentrations of ammonia, but these conditions are not compatible with the additive [Ir(COD)Cl]2 because this complex reacts with ammonia [102]. Thus, a reaction between ammonia and ethyl ciimamyl carbonate catalyzed by ethylene adduct lb produces the monoallylation product in higher yield than the same reaction catalyzed by la and [Ir(COD)Cl]2 (Scheme 27). Ammonia reacts with a range of allylic carbonates in the presence of lb to form branched primary allylic amines in good yield and high enantioselectivity (Scheme 28). Quenching these reactions with acyl chlorides or anhydrides leads to a one-pot synthesis of branched allylic amides that are not yet directly accessible by metal-catalyzed allylation of amides. [Pg.200]

N-Boc-N-(but-2-enoyl)amine is an excellent pronucleophile for the Ir-catalyzed allylic amination under salt-free conditions (cf. Table 9.3, entries 15-18). The products were subjected to RCM with good results, even upon application of the Grubbs I catalyst (Scheme 9.29) [27bj. The resultant N-Boc protected a,P-unsaturated y-lactams are valuable chiral intermediates with appUcations in natural products synthesis and medicinal chemistry. [Pg.238]

A combination of allylic amination and RCM was used for the synthesis of fSj-nicotine (Scheme 9.42) [76]. The Ir-catalyzed amination of methyl 3-(3-pyridyl)-allyl... [Pg.245]


See other pages where Allylic amines synthesis is mentioned: [Pg.37]    [Pg.37]    [Pg.37]    [Pg.37]    [Pg.95]    [Pg.348]    [Pg.352]    [Pg.355]    [Pg.355]    [Pg.175]    [Pg.199]    [Pg.140]    [Pg.221]    [Pg.278]    [Pg.697]    [Pg.698]    [Pg.700]    [Pg.703]    [Pg.720]    [Pg.166]    [Pg.119]    [Pg.110]    [Pg.110]    [Pg.212]    [Pg.119]    [Pg.781]   
See also in sourсe #XX -- [ Pg.541 , Pg.566 , Pg.567 , Pg.568 , Pg.569 , Pg.570 , Pg.571 , Pg.572 , Pg.573 , Pg.574 ]

See also in sourсe #XX -- [ Pg.541 , Pg.566 , Pg.567 , Pg.568 , Pg.569 , Pg.570 , Pg.571 , Pg.572 , Pg.573 , Pg.574 ]




SEARCH



Allyl amine

Allyl synthesis

Allylic amination

Allylic aminations

Allylic synthesis

Amines allylation

Amines allylic amine synthesis

Amines synthesis

© 2024 chempedia.info