Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl palladium catalysts

Scheme 12 Observed differences in regioselectivity in the formation of higher C16 telomers with allyl palladium catalysts... Scheme 12 Observed differences in regioselectivity in the formation of higher C16 telomers with allyl palladium catalysts...
Lipian J, Mimna RA, Fondran JC, Yandulov D et al. (2002) Addition polymerization of norbomene-type monomers. High activity cationic allyl palladium catalysts. Macromol 35 8969-8977... [Pg.158]

The cyclization of compound (65) to a 17-membered lactone with a PS-bound 7c-allyl palladium catalyst, shown in Scheme 29, was carried out with 0.7 fi substrate, a concentration 1(X) times higher than in most high dilution syntheses. The competing intermolecular reaction of one polymer-bound disulfonyl carbanion with a second polymer-bound 7r-allyl palladium is severely retarded. [Pg.880]

Allylic acetoxy groups can be substituted by amines in the presence of Pd(0) catalysts. At substituted cyclohexene derivatives the diastereoselectivity depends largely on the structure of the palladium catalyst. Polymer-bound palladium often leads to amination at the same face as the aoetoxy leaving group with regioselective attack at the sterically less hindered site of the intermediate ri -allyl complex (B.M. Trost, 1978). [Pg.164]

Intramolecular cycloadditions of substrates with a cleavable tether have also been realized. Thus esters (37a-37d) provided the structurally interesting tricyclic lactones (38-43). It is interesting to note that the cyclododecenyl system (w = 7) proceeded at room temperature whereas all others required refluxing dioxane. In each case, the stereoselectivity with respect to the tether was excellent. As expected, the cyclohexenyl (n=l) and cycloheptenyl (n = 2) gave the syn adducts (38) and (39) almost exclusively. On the other hand, the cyclooctenyl (n = 3) and cyclododecenyl (n = 7) systems favored the anti adducts (41) and (42) instead. The formation of the endocyclic isomer (39, n=l) in the cyclohexenyl case can be explained by the isomerization of the initial adduct (44), which can not cyclize due to ring-strain, to the other 7t-allyl-Pd intermediate (45) which then ring-closes to (39) (Scheme 2.13) [20]. While the yields may not be spectacular, it is still remarkable that these reactions proceeded as well as they did since the substrates do contain another allylic ester moiety which is known to undergo ionization in the presence of the same palladium catalyst. [Pg.65]

Reduction of iV-(3-bromopropyl) imines gives a bromo-amine in situ, which cyclizes to the aziridine. Five-membered ring amines (pyrrolidines) can be prepared from alkenyl amines via treatment with N-chlorosuccinimide (NCS) and then BusSnH. " Internal addition of amine to allylic acetates, catalyzed by Pd(PPh3)4, leads to cyclic products via a Sn2 reaction. Acyclic amines can be prepared by a closely related reaction using palladium catalysts. Three-membered cyclic amines (aziridines)... [Pg.500]

Alkenylboranes (R2C=CHBZ2 Z — various groups) couple in high yields with vinylic, alkynyl, aryl, benzylic, and allylic halides in the presence of tetra-kis(triphenylphosphine)palladium, Pd(PPh3)4, and a base to give R C CHR. 9-Alkyl-9-BBN compounds (p. 1013) also couple with vinylic and aryl halides " as well as with a-halo ketones, nitriles, and esters.Aryl halides couple with ArB(IR2 ) species with a palladium catalyst. ... [Pg.541]

Alkynes react with indium reagents such as (allyl)3ln2l3 to form dienes (allyl substituted alkenes from the alkyne). Allyltin reagents add to alkynes in a similar manner in the presence of ZrCU Alkylzinc reagents add to alkynes to give substituted alkenes in the presence of a palladium catalyst. ... [Pg.1026]

Allylic phosphonate esters react with imines, in the presence of a palladium catalyst, to give P-lactams. " Alkynyl reagents such as BuC=CO Li react with imines to form P-lactams. [Pg.1251]

Entry 6 is an example of application of the chiral diazaborolidine enolate method (see p. 572). Entry 7 involves generation of the silyl ketene acetal by silylation after conjugate addition of the enolate of 3-methylbutanoyloxazolidinone to allyl 3,3,3-trifluoroprop-2-enoate. A palladium catalyst improved the yield in the rearrangement... [Pg.575]

The allylation of carbonyl compounds in aqueous media with SnCl2 can also employ allylic alcohols (Eq. 8.39)84 or carboxylates85 in the presence of a palladium catalyst. The diastereoselectivity of the reactions with substituted crotyl alcohols was solvent dependent. Improved diastereoselectivity was obtained when a mixture of water and THF or DMSO was used, instead of the organic solvent alone. [Pg.231]

Enantioselective allylations of a-nitro ketones and a-nitro esters with allyl acetates are carried out in the presence of 2 equiv of alkali metal fluorides (KF, RbF, CsF) and 1 mol% palladium catalysts prepared in situ from Pd2(dba)3-CHC13 and chiral phosphine ligands. Moderate enantio-selectivity (ca 50% ee) is reported for allylation of cx-nitroketones (Eq. 5.60). The highest selectivity (80% ee) is observed for allylation of the reaction of tert-butyl ester (Eq. 5.61).93... [Pg.145]

The difficulty in controlling the regiochemistry during radical-denitration of allylic nitro compounds is well known. The migration of the double bond is a serious problem, as shown in Eq. 7.96. This problem is overcome by a hydride transfer reaction in the presence of a palladium catalyst (Eq. 7.97).140... [Pg.213]

Wilkinson s catalyst has also been utilized for the hydroboration of other alkenes. Sulfone derivatives of allyl alcohol can be hydroborated with HBcat and subsequently oxidized to give the secondary rather than primary alcohol. This reactivity proves to be independent of substituents on the sulfur atom.36 Similarly, thioalkenes undergo anti-Markovnikoff addition to afford a-thioboronate esters.37 The benefits of metal-catalyzed reactions come to the fore in the hydroboration of bromoalkenes (higher yields, shorter reaction times), although the benefits were less clear for the corresponding chloroalkenes (Table 3).38,39 Dienes can be hydroborated using both rhodium and palladium catalysts [Pd(PPh3)4] reacts readily with 1,3-dienes, but cyclic dienes are more active towards [Rh4(CO)i2].40... [Pg.270]

The asymmetric allylic alkylation (AAA) reaction has been adapted for use with pyrrole nucleophiles <06JACS6054>. For example, treatment of pyrrole 55 and cyclopentene 56 with a palladium catalyst in the presence of a chiral additive gave pyrrole 57 in up to 92% ee. The latter was elaborated into piperazinone-pyrrole natural product, agelastatin A 94. [Pg.143]

Heck C-C coupling reactions were also facilitated by the presence of a palladium catalyst when Pd was deposited on a tubular membrane of porous glass. Thus, the coupling of iodobenzene with allyl alcohol affording 3-phenylpropionaldehyde in the presence of this Pd catalyst had several advantages - the ease of catalyst manufacture, mechanical strength, thermal stability, and resistance to organic solvents [46],... [Pg.354]

In the presence of copper and palladium catalysts, terminal alkynes 1222 react with trimethylsilyl azide and allyl methyl carbonate to provide 2,4-disubstituted 1,2,3-triazoles 1223 in moderate to good yield. Isomerization of the allyl substituent in the presence of a ruthenium catalyst gives 4-substituted 2-(l-propen-l-yl)-2//-l,2,3-triazoles 1224. [Pg.136]

The allylic acetate 47 can be isomerized to 48 by the palladium catalyst. When Pd(acac)2 and PPh3 were used, 47 was converted at 90°C for 12 hours into a 3.9 1 mixture of 47 and 48. But the ratio remained 17 1 when tris(o-methylphenyl)phosphite (52) was used. [Pg.157]

Octatriene reacts further with butadiene in acetic acid by using 7r-allylic palladium complex as catalyst to give a mixture of acyioxydo-decatrienes (54). [Pg.157]


See other pages where Allyl palladium catalysts is mentioned: [Pg.18]    [Pg.227]    [Pg.18]    [Pg.227]    [Pg.27]    [Pg.71]    [Pg.214]    [Pg.299]    [Pg.374]    [Pg.80]    [Pg.204]    [Pg.526]    [Pg.535]    [Pg.535]    [Pg.538]    [Pg.540]    [Pg.541]    [Pg.541]    [Pg.557]    [Pg.820]    [Pg.869]    [Pg.944]    [Pg.1036]    [Pg.1336]    [Pg.1338]    [Pg.160]    [Pg.514]    [Pg.537]    [Pg.115]    [Pg.379]    [Pg.86]    [Pg.57]    [Pg.58]    [Pg.167]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Allyls palladium

Palladium allylation

Palladium catalysts Tsuji allylation

Palladium catalysts allylic alkylation

Palladium catalysts allylic amination

Palladium catalysts allylic arylation

Palladium catalysts allylic cyclization

Palladium catalysts allylic substitution

Palladium catalysts catalyst

Palladium catalysts catalyzed asymmetric allylation

© 2024 chempedia.info