Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl alcohols Sharpless chiral epoxidation

K. Barry Sharpless (bom 1941) received his PhD in 1968 at Stanford University. Since 1990 he is W. M. Keck Professor of Chemistry at the Scripps Research Institute in La Jolla, USA. Among several other important discoveries. Sharpless developed catalysts for asymmetric oxidations. In 1980 he achieved the catalytic asymmetirc oxidation of allylic alcohols to chiral epoxides by utilizing titanium complexes with chiral ligands (e. g. Section 3.3.2). One of the many applications of chiral epoxides is the use of the epoxide (R)-glycidol for pharmaceutical production of beta-blockers. Sharpless received the Nobel prize for chemistry in 2001 together with Knowles and Noyori. [Pg.25]

The emergence of the powerful Sharpless asymmetric epoxida-tion (SAE) reaction in the 1980s has stimulated major advances in both academic and industrial organic synthesis.14 Through the action of an enantiomerically pure titanium/tartrate complex, a myriad of achiral and chiral allylic alcohols can be epoxidized with exceptional stereoselectivities (see Chapter 19 for a more detailed discussion). Interest in the SAE as a tool for industrial organic synthesis grew substantially after Sharpless et al. discovered that the asymmetric epoxidation process can be conducted with catalytic amounts of the enantiomerically pure titanium/tartrate complex simply by adding molecular sieves to the epoxidation reaction mix-... [Pg.345]

The Sharpless epoxidation is a popular laboratory process that is both enantioselective and catalytic in nature. Not only does it employ inexpensive reagents and involve various important substrates (allylic alcohols) and products (epoxides) in organic synthesis, but it also demonstrates unusually wide applicability because of its insensitivity to many aspects of substrate structure. Selection of the proper chirality in the starting tartrate esters and proper geometry of the allylic alcohols allows one to establish both the chirality and relative configuration of the product (Fig. 4-1). [Pg.196]

Since its discovery in 1980,7 the Sharpless expoxidation of allylic alcohols has become a benchmark classic method in asymmetric synthesis. A wide variety of primary allylic alcohols have been epoxidized with over 90% optical yield and 70-90% chemical yield using TBHP (r-BuOOH) as the oxygen donor and titanium isopropoxide-diethyl tartrate (DET, the most frequently used dialkyl tartrate) as the catalyst. One factor that simplifies the standard epoxidation reaction is that the active chiral catalyst is generated in situ, which means that the pre-preparation of the active catalyst is not required. [Pg.196]

In Sharpless epoxidation reactions, (Z)-substituted allylic alcohols react much more slowly than the corresponding (E )-substituted substrates, and sometimes the reaction is sensitive to the position of preexisting chirality in the selected substrate. For instance, in the presence of (+)-DET, chiral (E)-allylic alcohol 10 undergoes epoxidation in 15 hours to give product 11 as the major product with a diastereomeric ratio of >20 1. As for reaction with ( )-DET, 12 is then obtained, also with a diastereoselectivity of >20 1 (Scheme 4-4). [Pg.198]

More than a decade of experience on Sharpless asymmetric epoxidation has confirmed that the method allows a great structural diversity in allylic alcohols and no exceptions to the face-selectivity rules shown in Fig. 10.1 have been reported to date. The scheme can be used with absolute confidence to predict and assign absolute configurations to the epoxides obtained from prochiral allylic alcohols. However, when allylic alcohols have chiral substituents at C(l), C(2) and/or C(3), the assignment of stereochemistry to the newly introduced epoxide group must be done with considerably more care. [Pg.280]

Sharpless Asymmetric Epoxidation This is a method of converting allylic alcohols to chiral epoxy alcohols with very high enantioselectivity (i.e., with preference for one enantiomer rather than formation of racemic mixture). It involves treating the allylic alcohol with tert-butyl hydroperoxide, titanium(IV) tetra isopropoxide [Ti(0—/Pr)4] and a specific stereoisomer of tartaric ester. For example,... [Pg.229]

Chiral Ligand for Asymmetric Catalysis. Dimethyl l-tartrate is a demonstrated chiral ligand for the Ti -catalyzed asymmetric epoxidation of allylic alcohols (Sharpless epoxidation), and the Zn -mediated asymmetric cyclo-propanation of allylic alcohols (Simmons-Smith reaction), see lodomethylzinc Iodide Enantioselectivities in these reactions... [Pg.269]

We will see Sharpless epoxidation reactions in the Double Methods section towards the end of the chapter. Interestingly, Sharpless other famous asymmetric method - dihydroxylation - has not found widespread use in kinetic resolution. This is probably because the AD is just too powerful or, to be anthropomorphic, too wilful. In other words, it is not sensitive to the chirality of the substrate and charges ahead and reacts with both enantiomers. That is not to say there are not examples of kinetic resolution with dihydroxylation,19 but they are more rare. However, the dihydroxylation is even more useful and much more general than the kinetic resolution of allylic alcohols by asymmetric epoxidation and was discussed in Chapter 25. A slightly complicated case of kinetic resolution of alcohols by asymmetric dihydroxylation is in the Double Methods section. [Pg.635]

Sharpless epoxidation of allyl alcohols (Sharpless, 1985, 1988 Pfenninger, 1986 Rossiter, 1985 Woodard et al., 1991 Finn and Sharpless, 1991 Corey, I990a,b), an example of which is included in Table 9.6, is perhaps the most recent and one of the most remarkable applications of asymmetric catalysis. The reaction is normally performed at low temperatures (-30 to 0°C) in methylene chloride with a titanium complex consisting of a chiral component [diethyl tartrate (DET) or diisopropyl tartrate (DIPT)] and a titanium salt (titanium tetraisopropoxide) as the catalyst. The beauty of the synthesis is that both enantiomers of the tartrate are available so that either form of the product can be prepared in more than 90% ee. [Pg.266]

As we predicted in last year s Report, the Sharpless chiral epoxidation procedure for allylic alcohols is beginning to make its impact with the synthesis of several important synthetic intermediates and natural products. We highlight here just one application to the synthesis of a key building block (2) for methymycin synthesis. This epoxide was produced in 79% yield and in >95% e.e. (Scheme 4). Owing to the water solubility of (2) modified work-up conditions were also developed and discussed. This enantioselective epoxidation method has been applied to produce a remarkably high kinetic resolution procedure for... [Pg.220]

Sharpless asymmetric epoxidation (SAE) is the epoxidation of allylic alcohols into asymmetric epoxides in high chiral purity (high enantioselectiv-ity). Transition metal catalyst Ti(OPr ) with chiral additive, diethyl tartarate (DET), generates chiral catalyst (Scheme 9.40) which is responsible for the enantioselective outcome, while, tert-butyl hydroperoxide (TBHP) serves as an oxidant. Although, this eatalytic system holds disadvantage of low turnover number (TON) with potential safety coneems for using concentrated solutions of peroxides, the reaction has nevertheless been extensively used in pharmaceutical industry [76]. [Pg.356]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

Sharpless epoxidations can also be used to separate enantiomers of chiral allylic alcohols by kinetic resolution (V.S. Martin, 1981 K.B. Sharpless, 1983 B). In this procedure the epoxidation of the allylic alcohol is stopped at 50% conversion, and the desired alcohol is either enriched in the epoxide fraction or in the non-reacted allylic alcohol fraction. Examples are given in section 4.8.3. [Pg.126]

The remarkable stereospecificity of TBHP-transition metal epoxidations of allylic alcohols has been exploited by Sharpless group for the synthesis of chiral oxiranes from prochiral allylic alcohols (Scheme 76) (81JA464) and for diastereoselective oxirane synthesis from chiral allylic alcohols (Scheme 77) (81JA6237). It has been suggested that this latter reaction may enable the preparation of chiral compounds of complete enantiomeric purity cf. Scheme 78) ... [Pg.116]

The Sharpless-Katsuki asymmetric epoxidation reaction (most commonly referred by the discovering scientists as the AE reaction) is an efficient and highly selective method for the preparation of a wide variety of chiral epoxy alcohols. The AE reaction is comprised of four key components the substrate allylic alcohol, the titanium isopropoxide precatalyst, the chiral ligand diethyl tartrate, and the terminal oxidant tert-butyl hydroperoxide. The reaction protocol is straightforward and does not require any special handling techniques. The only requirement is that the reacting olefin contains an allylic alcohol. [Pg.50]

In 1980, Katsuki and Sharpless communicated that the epoxidation of a variety of allylic alcohols was achieved in exceptionally high enantioselectivity with a catalyst derived from titanium(IV) isopropoxide and chiral diethyl tartrate. This seminal contribution described an asymmetric catalytic system that not only provided the product epoxide in remarkable enantioselectivity, but showed the immediate generality of the reaction by examining 5 of the 8 possible substitution patterns of allylic alcohols all of which were epoxidized in >90% ee. Shortly thereafter. Sharpless and others began to illustrate the... [Pg.50]

The AE reaction has been applied to a large number of diverse allylic alcohols. Illustration of the synthetic utility of substrates with a primary alcohol is presented by substitution pattern on the olefin and will follow the format used in previous reviews by Sharpless but with more current examples. Epoxidation of substrates bearing a chiral secondary alcohol is presented in the context of a kinetic resolution or a match versus mismatch with the chiral ligand. Epoxidation of substrates bearing a tertiary alcohol is not presented, as this class of substrate reacts extremely slowly. [Pg.54]

A noteworthy feature of the Sharpless Asymmetric Epoxidation (SAE) is that kinetic resolution of racemic mixtures of chiral secondary allylic alcohols can be achieved, because the chiral catalyst reacts much faster with one enantiomer than with the other. A mixture of resolved product and resolved starting material results which can usually be separated chromatographically. Unfortunately, for reasons that are not yet fully understood, the AD is much less effective at kinetic resolution than the SAE. [Pg.686]

Ten years after Sharpless s discovery of the asymmetric epoxidation of allylic alcohols, Jacobsen and Katsuki independently reported asymmetric epoxidations of unfunctionalized olefins by use of chiral Mn-salen catalysts such as 9 (Scheme 9.3) [14, 15]. The reaction works best on (Z)-disubstituted alkenes, although several tri-and tetrasubstituted olefins have been successfully epoxidized [16]. The reaction often requires ligand optimization for each substrate for high enantioselectivity to be achieved. [Pg.318]

The past thirty years have witnessed great advances in the selective synthesis of epoxides, and numerous regio-, chemo-, enantio-, and diastereoselective methods have been developed. Discovered in 1980, the Katsuki-Sharpless catalytic asymmetric epoxidation of allylic alcohols, in which a catalyst for the first time demonstrated both high selectivity and substrate promiscuity, was the first practical entry into the world of chiral 2,3-epoxy alcohols [10, 11]. Asymmetric catalysis of the epoxidation of unfunctionalized olefins through the use of Jacobsen s chiral [(sale-i i) Mi iln] [12] or Shi s chiral ketones [13] as oxidants is also well established. Catalytic asymmetric epoxidations have been comprehensively reviewed [14, 15]. [Pg.447]

Finally, the necessity arose for the synthesis of pentulose 21, labeled with, 3C on the central carbons, C-2 and C-3, for an independent biosynthetic study, which is reported in Section III.5.27 The doubly labeled ester 34 (Scheme 14) is readily available by a Wittig- Homer condensation of benzyloxyacetaldehyde with commercially available triethylphosphono-(l,2-l3C2)acetate. Chirality was introduced by the reduction of ester 34 to the allylic alcohol, which produced the chiral epoxide 35 by the Sharpless epoxidation procedure. This was converted into the tetrose 36, and thence, into the protected pentulose 37 by the usual sequence of Grignard reaction and oxidation. [Pg.281]

The stereochemistry of the first step was ascertained by an X-ray analysis [8] of an isolated oxazaphospholidine 3 (R = Ph). The overall sequence from oxi-rane to aziridine takes place with an excellent retention of chiral integrity. As the stereochemistry of the oxirane esters is determined by the chiral inductor during the Sharpless epoxidation, both enantiomers of aziridine esters can be readily obtained by choosing the desired antipodal tartrate inductor during the epoxidation reaction. It is relevant to note that the required starting allylic alcohols are conveniently prepared by chain elongation of propargyl alcohol as a C3 synthon followed by an appropriate reduction of the triple bond, e. g., with lithium aluminum hydride [6b]. [Pg.95]

Although the Sharpless asymmetric epoxidation is an elegant method to introduce a specific defined chirality in epoxy alcohols and thus, in functionalized aziridines (see Sect. 2.1), it is restricted to the use of allylic alcohols as the starting materials. To overcome this limitation, cyclic sulfites and sulfates derived from enantiopure vfc-diols can be used as synthetic equivalents of epoxides (Scheme 5) [12,13]. [Pg.97]

Asymmetric epoxidation is another important area of activity, initially pioneered by Sharpless, using catalysts based on titanium tetraisoprop-oxide and either (+) or (—) dialkyl tartrate. The enantiomer formed depends on the tartrate used. Whilst this process has been widely used for the synthesis of complex carbohydrates it is limited to allylic alcohols, the hydroxyl group bonding the substrate to the catalyst. Jacobson catalysts (Formula 4.3) based on manganese complexes with chiral Shiff bases have been shown to be efficient in epoxidation of a wide range of alkenes. [Pg.117]

Fig. 12.4. Successive models of the transition state for Sharpless epoxidation. (a) the hexacoordinate Ti core with uncoordinated alkene (b) Ti with methylhydroperoxide, allyl alcohol, and ethanediol as ligands (c) monomeric catalytic center incorporating t-butylhydroperoxide as oxidant (d) monomeric catalytic center with formyl groups added (e) dimeric transition state with chiral tartrate model (E = CH = O). Reproduced from J. Am. Chem. Soc., 117, 11327 (1995), by permission of the American Chemical Society. [Pg.1084]


See other pages where Allyl alcohols Sharpless chiral epoxidation is mentioned: [Pg.454]    [Pg.1]    [Pg.23]    [Pg.277]    [Pg.261]    [Pg.219]    [Pg.334]    [Pg.470]    [Pg.342]    [Pg.261]    [Pg.175]    [Pg.384]    [Pg.254]    [Pg.432]    [Pg.26]    [Pg.295]    [Pg.310]    [Pg.434]    [Pg.769]    [Pg.113]    [Pg.1235]    [Pg.26]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Alcohols Sharpless epoxidation

Alcohols chiral

Alcohols epoxidation

Allyl alcohols Sharpless epoxidation

Allylic alcohols Sharpless epoxidation

Allylic epoxidations

Allylic epoxide

Allylic epoxides

Allylic sharpless epoxidation

Chiral allyl alcohols

Chiral allylic alcohols

Chiral epoxidations

Chiral epoxide

Chiral epoxides

Epoxidation allyl alcohol

Epoxidation allylic alcohols

Epoxidation chiral

Epoxidations allylic alcohols

Epoxide Sharpless

Epoxide alcohol

Epoxides allylation

Epoxides, Sharpless

Sharpless

Sharpless epoxidation

Sharpless epoxidations

© 2024 chempedia.info