Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl alcohols 4 + 3 cycloaddition reactions

The first, and so far only, metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction of nitrile oxides with alkenes was reported by Ukaji et al. [76, 77]. Upon treatment of allyl alcohol 45 with diethylzinc and (l ,J )-diisopropyltartrate, followed by the addition of diethylzinc and substituted hydroximoyl chlorides 46, the isoxazolidines 47 are formed with impressive enantioselectivities of up to 96% ee (Scheme 6.33) [76]. [Pg.235]

The above described approach was extended to include the 1,3-dipolar cycloaddition reaction of nitrones with allyl alcohol (Scheme 6.35) [78]. The zinc catalyst which is used in a stoichiometric amount is generated from allyl alcohol 45, Et2Zn, (R,J )-diisopropyltartrate (DIPT) and EtZnCl. Addition of the nitrone 52a leads to primarily tmns-53a which is obtained in a moderate yield, however, with high ee of up to 95%. Application of 52b as the nitrone in the reaction leads to higher yields of 53b (47-68%), high trans selectivities and up to 93% ee. Compared to other metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions of... [Pg.236]

Zinc-tartrate complexes were applied for reactions of both nitrones and nitrile oxides with allyl alcohol and for both reaction types selectivities of more than 90% ee were obtained. Whereas the reactions of nitrones required a stoichiometric amount of the catalyst the nitrile oxide reactions could be performed in the presence of 20 mol% of the catalyst. This is the only example on a metal-catalyzed asymmetric 1,3-dipolar cycloaddition of nitrile oxides. It should however be no-... [Pg.244]

Schemes 16-19 present the details of the enantioselective synthesis of key intermediate 9. The retrosynthetic analysis outlined in Scheme 5 identified aldoxime 32 as a potential synthetic intermediate the construction of this compound would mark the achievement of the first synthetic objective, for it would permit an evaluation of the crucial 1,3-dipolar cycloaddition reaction. As it turns out, an enantioselective synthesis of aldoxime 32 can be achieved in a straightforward manner by a route employing commercially available tetronic acid (36) and the MEM ether of allyl alcohol (74) as starting materials (see Scheme 16). Schemes 16-19 present the details of the enantioselective synthesis of key intermediate 9. The retrosynthetic analysis outlined in Scheme 5 identified aldoxime 32 as a potential synthetic intermediate the construction of this compound would mark the achievement of the first synthetic objective, for it would permit an evaluation of the crucial 1,3-dipolar cycloaddition reaction. As it turns out, an enantioselective synthesis of aldoxime 32 can be achieved in a straightforward manner by a route employing commercially available tetronic acid (36) and the MEM ether of allyl alcohol (74) as starting materials (see Scheme 16).
ISOC reaction was employed to synthesize substituted tetrahydrofurans 172 fused to isoxazolines (Scheme 21) [44b]. The silyl nitronates 170 resulted via the nitro ethers 169 from base-mediated Michael addition of allyl alcohols 168 to nitro olefins 167. Cycloaddition of 170 followed by elimination of silanol provided 172. Reactions were conducted in stepwise and one-pot tandem fashion (see Table 16). A terminal olefinic Me substituent increased the rate of cycloaddition (Entry 3), while an internal olefinic Me substituent decreased it (Entry 4). [Pg.25]

The C(6)-C(15) segment was synthesized by Steps C-l and C-2. The stereoselectivity of the cycloaddition reaction between the nitrile oxide and allylic alcohol is the result of a chelated TS involving the Mg alkoxide.39... [Pg.1226]

To control the stereochemistry of 1,3-dipolar cycloaddition reactions, chiral auxiliaries are introduced into either the dipole-part or dipolarophile. A recent monograph covers this topic extensively 70 therefore, only typical examples are presented here. Alkenes employed in asymmetric 1,3-cycloaddition can be divided into three main groups (1) chiral allylic alcohols, (2) chiral amines, and (3) chiral vinyl sulfoxides or vinylphosphine oxides.63c... [Pg.251]

It has recently been found that Et2Zn promotes the 1,3-dipolar cycloaddition of nitrile oxides to allyl alcohol in the presence of catalytic amounts of diisopropyl tartrate (DIPT). By this method, 2-isoxazlines are obtained in good yields and up to 96% ee (Eq. 8.73).124a A positive nonlinear effect (amplification of ee of the product) has been observed in this reaction. There is an excellent review on positive and negative nonlinear effects in asymmetric induction.124b... [Pg.267]

The isoquinolinium ylide 241 reacts with allyl alcohol in a [3+2] cycloaddition to give the tetracyclic product 242 (Equation 32) the primary cycloaddition product spontaneously undergoes an intramolecular transesterification to give the isolated furanone. Similarly, reaction of such ylides with vinylene carbonate gives the tetracycles 243 (Equation 33) <1988BCJ2513>. [Pg.814]

The application of microwaves to the cycloaddition reactions of allyl alcohols 180 with nitrile oxides not only achieved a substantial reduction of the reaction time and an improvement of the adduct yields, but also altered the regioselectivity of the cycloaddition in favor of the nonhydrogen bond-directed cycloadduct 182 (Scheme 9.55) [105]. [Pg.327]

A strategy based on the diastereoselective dipolar cycloaddition reaction of nitrile oxides and allylic alcoholates, has been applied to the synthesis of bis-(isoxazolines) that are precursors to polyketide fragments. These intermediates can be elaborated into protected polyols, for example, 439, by sequential chemos-elective reductive opening of each isoxazoline or, alternatively, by simultaneously, providing access to all stereoisomers of this carbon skeleton (479). [Pg.96]

Cycloaddition of nitrone (508) to allyl alcohol at ambient temperature gave a mixture of four cycloadducts in a 23 5 4 1 ratio (Scheme 2.244). All of the adducts (509) are derived from the regiochemical approach opposite to the intramolecular pathway (Fig. 2.35). Formation of the cycloadduct in the intramolecular cycloaddition reaction is ascribed to a high preference for an endo-syn transition state, due to the constraint imposed by the short, three atom connecting chain (116). The major product in the intermolecular cycloaddition reaction was the exo-anti -(509) adduct (Scheme 2.244 and Fig. 2.35). [Pg.322]

The reaction of 1,3-dipolar cycloaddition of enantiopure cyclic nitrones to protected allyl alcohol, is the basis of stereoselective syntheses of bicyclic N, O-iso-homonucleoside analogs (747), of isoxazolidine, to analogs of C-nucleosides related to pseudouridine (748) and to homocarbocyclic-2 -oxo-3 -azanucleosides (749) (Fig. 2.36). [Pg.325]

The first demonstration of fluorous synthesis was in the preparation of small (8-12 members) isoxazo-line and isoxazole libraries by the three-step procedure outlined in Figure 8.1461 All reactions were purified by three-phase liquid-liquid extraction. The starting substrates were simple allylic alcohols which were tagged with the fluorous silyl halide 5 to make substrates 6 for an ensuing dipolar cycloaddition. This was conducted by the Mukaiyama method with a large excess of nitro compound and... [Pg.32]

Ab initio calculations also confirm that the use of an allyl magnesium alkoxide in place of the alcohol functionality will lead to high or complete stereoselectivity (138). When homoallylic alcohols are used, the Kanemasa protocol afforded the respective isoxazolines with poor stereoselectivity ( 55 45) in the case of terminal aUcenes, but with very high diastereoselectivity (up to 96 4) in the reaction of cis-1,2-disubstituted olefins (136). Extension of this concept to the reaction of a-silyl allyl alcohols also proved feasible and produced the syn (threo) adducts as nearly pure diastereomers (>94 6) (137). Thus, the normal stereoselectivity of the cycloaddition to the Morita-Baylis-Hillman adducts (anti > syn, see above) can be reversed by prior addition of a Grignard reagent (176,177). Both this reversal... [Pg.392]

N/L recorded was 16,000 for the reactions using the magnesium aUcoxide of 3-methyl-2-buten-l-ol as a multisubstituted internal allylic alcohol substrate, which is why regiocontrol is still effective in the reactions in a highly coordinating solvent such as THE. Rate enhancement is much lower in the nitrile oxide cycloaddition reactions using homoallylic alcohol substrates. [Pg.785]

The magnesium ion-mediated nitrone cycloadditions of an a,y-disubstituted allyl alcohol are stereoselective, and show opposite regioselectivity to that observed when zinc-mediated reactions are examined (Scheme 11.48) (167). The exo-syn-isomer of the isoxazolidine-5-alcohol regioisomer and the exo-syn-isomer of the isoxazolidine-4-alcohol regioisomer are the exclusive cycloadducts in the magnesium- and zinc-mediated reactions, respectively. [Pg.798]

The above dramatic dependence of regio- and stereoselectivity on the nature of the metal can be explained by the reaction mechanism shown in Scheme 11.49 (167). The nitrone cycloadditions of allylic alcohols are again magnesium-specific just like the nitrile oxide reactions described in Section 11.2.2. Magnesium ions accelerate the reaction through a metal ion-bound intramolecular cycloaddition path. On the other hand, zinc ions afford no such rate acceleration, but these ions catalyze the acetalization at the benzoyl carbonyl moiety of the nitrone to provide a hemiacetal intermediate. The subsequent intramolecular regio- and stereoselective cycloaddition reaction gives the observed products. [Pg.798]


See other pages where Allyl alcohols 4 + 3 cycloaddition reactions is mentioned: [Pg.267]    [Pg.224]    [Pg.236]    [Pg.248]    [Pg.248]    [Pg.249]    [Pg.249]    [Pg.461]    [Pg.824]    [Pg.824]    [Pg.529]    [Pg.689]    [Pg.81]    [Pg.82]    [Pg.68]    [Pg.25]    [Pg.641]    [Pg.516]    [Pg.68]    [Pg.543]    [Pg.258]    [Pg.343]    [Pg.1173]    [Pg.1173]    [Pg.562]    [Pg.784]    [Pg.781]    [Pg.783]    [Pg.784]    [Pg.784]    [Pg.784]    [Pg.787]    [Pg.798]   
See also in sourсe #XX -- [ Pg.5 , Pg.261 ]




SEARCH



Alcohols cycloadditions

Allyl alcohol, reaction

Allylation cycloadditions

Allylic alcohols cycloaddition

Allylic alcohols cycloaddition reactions

Allylic alcohols, reactions

© 2024 chempedia.info