Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allenic-acetylenic isomerism

Nate 2. The reaction probably proceeds via the complex of CuCN and KCN, affording a mixture of propargyl cyanide and cyanoallene. The acetylene isomerizes under the influence of the slightly alkaline KCN. If the latter is added at too fast a rate, resinification of the allene may occur. Care should therefore be taken that some CuCN is always present. [Pg.174]

Trofimov has extended his previously reported heterocyclization of ketoximes 39 with acetylene to propyne or its isomer allene in superbase systems (MOR/DMSO M = K, Cs, R = H, t-Bu) to afford a facile synthesis of substituted pyrroles 40 and 41 . Due to a fast propyne to allene protropic isomerization under the reaction conditions, the product is the same regardless of which species is employed. [Pg.114]

The pyrolysis of pyrrole produces a variety of products hydrogen cyanide, propyne, allene, acetylene, c/ -crotonitrile, and allyl cyanide, among them. Lifshitz et al. hypothesized that pyrrole undergoes 1,2-bond (N—C) cleavage, then an internal H-atom transfer, to yield a radical intermediate that can isomerize to either c/ -crotonitrile or allyl cyanide, or dissociate to HCN and propyne.Bacskay et al. completed quantum chemical comparisons of the isoelectronic pyrrolyl and cyclopentadienyl radicals they hypothesized that pyrrolyl radical is formed via C—H bond scission in the intermediate pyrrolenine (2/f-pyrrole) rather than directly via N—H bond cleavage (Fig. 14). Mackie et al. explained a similar finding, postulating that it was the formation of pyrrolenine that dictated the rate at which pyrrole pyrolysis occurred. [Pg.110]

Welter, W., Hartmann, A., and Regitz, M., Carbenes. Part 18. Isomerization reactions of phosphoryl-vinyl-carbenes to phosphorylated cyclopropenes, allenes, acetylenes, indenes, and 1,3-butadienes, Chem. Ber, 111, 3068, 1978. [Pg.43]

Condensation of y-(trialkylsilyl)allylboranes and allenylboranes with simple aldehydes and conjugated allenic, acetylenic, and enynyl aldehydes followed by a stereoselective elimination of trialkylsilanol produced 1,3-butadienes, diene-allenes, enyne-allenes, enediynes, and dienediynes with high isomeric purity. The trimethyltin chloride-induced transformations of 1-alkynyltrialkylborates also provided easy access to a variety of unsaturated compounds. High energy intermediates, such as o-isotoluenes, biradicals, o-quinodimethanes, benzocyclobutadienes, and enyne-ketenes, were derived from these unsaturated molecules for subsequent synthetic elaborations. [Pg.63]

CH = C = CH— are called allenes after the simplest member of the series. They are said to have cumulated double bonds. They react in most cases normally, that is, each double bond is unaffected by the proximity of the other they are converted by heating into the isomeric acetylenes. Compounds of the type... [Pg.142]

If two equivalents of the reagents are used, disubstitution to ECeC-CH(E)R occurs in most cases, but interestingly the reaction of LiCeCCH(Li)R with an excess of COj gives mainly the allenic dicarboxylic acids. These are probably the result of a rapid isomerization of the primary dilithium salt of the acetylenic diacid during the work-up or during the reaction of the dilithio compound with COj ... [Pg.27]

We presume that the dilithiopropyne causes partial isomerization into the allenic derivative. The treatment with KOH is to complete this transformation. When the latter treatment was not carried out, considerable amounts of the acetylenic diacids were sometimes found in the crude product. [Pg.51]

Tertiary acetylenic halides give unsatisfactory results owing to further isomerization of the allenic halide into a conjugated diene system under the influence of the copper salt. Bromo- and iodoallenes with the structures R R2C=C=CH-X can also be synthesized by an aqueous procedure, consisting of reaction between... [Pg.154]

In the first method a secondary acetylenic bromide is warmed in THF with an equivalent amount of copper(I) cyanide. We found that a small amount of anhydrous lithium bromide is necessary to effect solubilization of the copper cyanide. Primary acetylenic bromides, RCECCH Br, under these conditions afford mainly the acetylenic nitriles, RCsCCHjCsN (see Chapter VIII). The aqueous procedure for the allenic nitriles is more attractive, in our opinion, because only a catalytic amount of copper cyanide is required the reaction of the acetylenic bromide with the KClV.CuCN complex is faster than the reaction with KCN. Excellent yields of allenic nitriles can be obtained if the potassium cyanide is added at a moderate rate during the reaction. Excess of KCN has to be avoided, as it causes resinifi-cation of the allenic nitrile. In the case of propargyl bromide 1,1-substitution may also occur, but the propargyl cyanide immediately isomerizes under the influence of the potassium cyanide. [Pg.155]

The addition of secondary amines to acetylenes is most applicable to the synthesis of conjugated acyclic enamines (50,171,172). Particularly the addition to acetylenic esters and sulfones has been investigated (173-177) and it appears that an initial trans addition is followed by isomerization to more stable products where the amine and functional group are in a trans orientation (178). Enamines have also been obtained by addition of secondary amines to allenes (179). [Pg.332]

Unsaturated substituents of dioxolanes 36-38 and dioxanes 39-41 are prone to prototropic isomerization under the reaction conditions. According to IR spectroscopy, the isomer ratio in the reaction mixture depends on the temperature and duration of the experiment. However, in all cases, isomers with terminal acetylenic (36, 39) or allenic (37, 40) groups prevail. An attempt to displace the equilibrium toward the formation of disubstituted acetylene 41 by carrying out the reaction at a higher temperature (140°C) was unsuccessful From the reaction mixture, the diacetal of acetoacetaldehyde 42, formed via addition of propane-1,3-diol to unsaturated substituents of 1,3-dioxanes 39-41, was isolated (74ZOR953). [Pg.170]

The isomerization of acetylenic oxiranes cis- and trows-91 to allenic ketone 94 has recently been described (Scheme 5.18). It is proposed that the rearrangement proceeds via a dilithium ynenolate [33]. [Pg.155]

When colorless crystals of rac-s-trans-3,8-di-tert-butyl-l,5,6,10-tetraphenyl-deca-3,4,6,7-tetraene-l,9-diyne (123) were heated at 140 °C for 2 h, the ben-zodicylobutadiene derivative (126) was produced as green crystals. As shown in the sequence (Scheme 20), 123 is first isomerized to its s-ds-isomer (124), and intramolecular thermal reaction of the two allene moieties through a [2+2] conrotatory cyclization gives the intermediate 125, which upon further thermal reaction between acetylene moieties gives the final product 126 [19,22].This is another example of the crystal-to-crystal reaction. [Pg.28]

Few furan 3-carbanions are stable except at low temperatures and only recently have they been extensively used. Ring opening is common. Gilchrist and Pearson218 report that the fate of the unusually stable carbanion 84 depends upon both solvent and temperature. At room temperature and in benzene it partly opens giving the allenic ketone 85 in ether it is fairly stable. In hexane, the 3-lithiofuran is precipitated unless heated to 65 C when it isomerizes to acetylenic salts giving the allenic ketone 85 with water. [Pg.210]

Very often the carbon framework of the future allene is already present in the substrate and often it is propargylic in nature. For example, base-catalyzed isomeriza-tions of acetylenic hydrocarbons - with the triple bond in a non-terminal (40) or terminal position - were often used to prepare allenic hydrocarbons in the early days of allene chemistry [8]. The disadvantage of this approach consists in the thermodynamic instability of the allenes produced if not prohibited for structural reasons, the isomerizations do not stop at the allene but proceed to the more stable conjugated diene stage. In practice, complex mixtures are often formed [9] (see also Chapter 1). [Pg.189]

When the cyclic acetylene 260 is generated from a suitable precursor, it undergoes an isomerization reaction spontaneously generating naphthalene (263) and benzo-fulvene (264) as the finally isolable products. Very likely the process begins with a retro-Diels-Alder reaction to the [3]cumulene 261, which in a cascade reaction via the semicydic allene 262 rearranges to 263 and 264 [111]. [Pg.220]

Pharmacologically active allenic steroids have already been examined intensively for about 30 years [5], Thus, the only naturally occurring allenic steroid 107 had been synthesized 3 years before its isolation from Callyspongia diffusa and it had been identified as an inhibitor of the sterol biosynthesis of the silkworm Bombyx mori (Scheme 18.34) [86d], At this early stage, allenic 3-oxo-5,10-secosteroids of type 108 were also used for the irreversible inhibition of ketosteroid isomerases in bacteria, assuming that their activity is probably caused by Michael addition of a nucleophilic amino acid side chain of the enzyme at the 5-position of the steroid [103, 104]. Since this activity is also observed in the corresponding /3,y-acetylenic ketones, it can be rationalized that the latter are converted in vivo into the allenic steroids 108 by enzymatic isomerization [104, 105],... [Pg.1019]

Investigations of base-catalyzed isomerizations of allene derivatives have been recently continued. For instance, the rearrangement of allene ethers 53 under superbasic conditions (KOH-DMSO) is considered as one of the steps in hydration of acetylene derivatives (equation 17)31,32. [Pg.747]

Similarly, 1,2-cyclononadiene in methanol with 10% palladium on carbon catalyst gave cis-cyclononene122. The cis isomer is not necessarily the primary product of allene hydrogenation, since the initially formed trans isomer is rapidly isomerized under the reaction conditions. Bond and Sheridan showed that allene resembles acetylene in its ease of hydrogenation123. They suggested that it is selectively adsorbed and held more strongly by the catalyst than 1-propene. Allene was selectively hydrogenated with Pd, Pt and Ni in the presence of 1-propene without its further reduction. [Pg.1013]

Cyclic allenes have previously been obtained only admixed with the isomeric acetylenes. The present two-step synthesis is a practical method for the preparation of cyclic allenes, and at the same time it describes a general method for the preparation of allenes. It is based on the original work of Doering and co-workers. Examples of the reaction sequence above are known in which allenes are not produced, or they represent only a part of the reaction products. A one-step synthesis of 1,2-cyclonona-diene has been reported. ... [Pg.20]

Rearrangements of disilanes to a-silylsilenes are well established and are involved in the exchange of substituents between a silylene center and the adjacent silicon.Pulsed flash pyrolysis of acetylenic disilane (41) gave rise to the acetylenic silene (42), which subsequently rearranged to the cyclic silylene, 1-silacyclopropenylidene (43). Irradiation of the cyclic silylene resulted in the isomerization to the isomeric 42, which itself could be photochemically converted into the allenic silylene (44). Both 42 and 43 also were reported to isomerize on photolysis to the unusual (45), which was characterized spectroscopically (Scheme 14.24). [Pg.667]

Reduction of propargylic chlorides with tri-n-butyltin hydride to a mixture of the corresponding acetylene and isomeric allene [92],... [Pg.25]

The exhaustive controlled-potential reduction of 6-chioro-l-phenylhex-l-yne at — 1.57 V in dimethylformamide containing tetrabutylammonium perchlorate gave a mixture of products. among which was ( >(2-phcnylvinyl)cyclobutane (9).11 It is probable that the mechanism involves initial isomerization of the acetylene to an allene 8 which is reduced at — 1.57 V to the radical anion. Protonation and further onc-clectron reduction then yield the allylic anion. An intramolecular nucleophilic substitution eventually gives the cyclobutane.11... [Pg.66]

Other isomerization products of excited methylenecyclopropane were butadiene, methyl allene, dimethyl acetylene, and ethylacetylene. The rate of isomerization of excited methylallene was slow compared to that of excited methylenecyclopropane. [Pg.248]


See other pages where Allenic-acetylenic isomerism is mentioned: [Pg.208]    [Pg.584]    [Pg.208]    [Pg.99]    [Pg.84]    [Pg.206]    [Pg.345]    [Pg.53]    [Pg.188]    [Pg.90]    [Pg.254]    [Pg.83]    [Pg.251]    [Pg.194]    [Pg.158]    [Pg.171]    [Pg.110]    [Pg.274]    [Pg.231]    [Pg.240]    [Pg.278]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Allenes isomerism

© 2024 chempedia.info