Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynes palladium® chloride

A rapid MW-assisted palladium-catalyzed coupling of heteroaryl and aryl boronic acids with iodo- and bromo-substituted benzoic acids, anchored on TentaGel has been achieved [174]. An environmentally friendly Suzuki cross-coupling reaction has been developed that uses polyethylene glycol (PEG) as the reaction medium and palladium chloride as a catalyst [175]. A solventless Suzuki coupling has also been reported on palladium-doped alumina in the presence of potassium fluoride as a base [176], This approach has been extended to Sonogashira coupling reaction wherein terminal alkynes couple readily with aryl or alkenyl iodides on palladium-doped alumina in the presence of triphenylphosphine and cuprous iodide (Scheme 6.52) [177]. [Pg.210]

Alkenes can be converted to succinic esters by reaction with carbon monoxide, an alcohol, and palladium chloride in the presence of mercuric chloride.1,12 The addition is mostly syn. In similar reaction, both terminal and internal alkynes can be converted to esters of maleic acid. [Pg.878]

Cyclizations with nitrogen nucleophiles involving alkynes and allenes have received little attention until recently. The cyclizations of several a-aminoallenes to 3-pyrrolines with silver tetrafluoroborate was reported by Claesson and coworkers (equation 133).264 A similar cyclization to form A -carba-penems has been reported (equation 134).265 Diastereomeric allenes (R1 R2) were shown to cyclize with complete stereocontrol. Cyclization with palladium chloride in the presence of allyl bromide or electrophilic alkenes allowed for the intermediate vinylpalladium species to be trapped by the electrophile.2651 A related product was obtained by cyclization of an alkynic substrate (equation 13S).265 Other examples of 5-endo cyclization of p-aminoalkynes50 include the formation of indoles by cyclization of 2-alkynylanilines with mercury salts200 or palladium chloride,266a,266b,266c formation of 1-pyrrolines with catalytic palladium chloride (equation 136)198 and formation of pyrroles by cyclization of hydroxy-substituted p-aminoalkynes.198,2666... [Pg.411]

Although these catalytic partial hydrogenations of alkynes may well be regarded as the procedure of choice for (Z)-alkenes,25 other catalytic systems have been explored. These include a sodium hydride-sodium alkoxide-nickel(n) acetate reagent,26 and a sodium borohydride-palladium chloride-polyethylene glycol system.27 Diisobutylaluminium hydride (DIBAL) has also been used for the conversion of alkynes into (Z)-alkenes.28 ( )-Alkenes are formed when the internal triple bond is reduced with sodium in liquid ammonia.29... [Pg.494]

Alkyne cyclotrimerization occurs at various homogeneous and heterogeneous transition metal and Ziegler-type catalysts [7], Substituted benzenes have been prepared in the presence of iron, cobalt, and nickel carbonyls [8] as well as trialkyl- and triarylchromium compounds [9]. Bis(acrylonitrile)nickel [10] and bis(benzonitrile)palladium chloride [11] catalyze the cyclotrimerization of tolane to hexaphenylbenzene. NiCl2 reduced by NaBH4 has been utilized for the trimer-ization of 3-hexyne to hexaethylbenzene [12]. Ta2Cl6(tetrahydrothiophene)3 and Nb2Cl6(tetrahydrothiophene)3 as well as 7 -Ind-, and 77 -Ru-rhodium... [Pg.1253]

The best reagent for selective reduction of alkynes to the cis alkene is the Lindlar catalyst.3 1 Palladium chloride (PdCl2) was precipitated on calcium carbonate (CaCOs) in acidic media and deactivated with lead tetraacetate [Pb(OAc)4] to give the named Pd-CaC03-Pb0 catalyst. Reduction of alkynes will stop at the cis alkene with little or no cis-trans isomerization. A variation uses quinoline as a poison, and this catalyst was used by Overman and co-workers to convert alkyne 378 to cis-alkene 379 as part of a synthesis of... [Pg.381]

Virtually all alkynes react readily with palladium chloride under ambient conditions to give red-brown complexes single substances are usually obtained from disubstituted alkynes, but the reaction of most monosubstituted alkynes and acetylene itself leads to the formation of complex mixturcs. ... [Pg.624]

Homooligomerization of alkynes using palladium chloride as catalyst has been studied extensivelyHowever, few examples are known of cooligomerization of alkynes and monoolefins probably because of the difficulty due to the large difference in coordinalion ability between alkynes and alkenes to the metal center alkynes are more reactive to metals than alkenes are, which results in exclusive polymerization of the alkynes. Therefore, in order to accomplish the cooligomerization of alkynes and alkenes, it is very important to select suitable alkynic or alkenic compounds with similar orders of coordination ability to a metal, or to devise reactive conditions in which extensive alkyne polymerization is prevented. [Pg.626]

The conversion of acetylenes into olefinic esters by use of addition reactions has been illustrated by the following two examples, (i) 1-Alkenyl boranes, which are readily prepared by the hydroboration of alkynes, are converted into a,fi-unsaturated carboxylic esters in good yield by reaction with carbon monoxide in the presence of palladium chloride and sodium acetate in methanol the process is carried out at atmospheric pressure and occurs with retention of configuration with respect to the alkenyl borane. (ii) Carboxylic acids add to acetylenes in the presence of silver carbonate to provide a novel synthesis of enol esters, which are formed in an 8 2 mixture of isomers. ... [Pg.120]

Terminal alkynes react with propargylic carbonates at room temperature to afford the alka-l, 2-dien-4-yne 14 (allenylalkyne) in good yield with catalysis by Pd(0) and Cul[5], The reaction can be explained by the transmetallation of the (7-allenylpailadium methoxide 4 with copper acetylides to form the allenyKalk-ynyl)palladium 13, which undergoes reductive elimination to form the allenyl alkyne 14. In addition to propargylic carbonates, propargylic chlorides and acetates (in the presence of ZnCb) also react with terminal alkynes to afford allenylalkynes[6], Allenylalkynes are prepared by the reaction of the alkynyl-oxiranes 15 with zinc acetylides[7]. [Pg.455]

The groups R2N and Cl can be added directly to alkenes, allenes, conjugated dienes, and alkynes, by treatment with dialkyl-V-chloroamines and acids. " These are free-radical additions, with initial attack by the R2NH- radical ion. " N-Halo amides (RCONHX) add RCONH and X to double bonds under the influence of UV light or chromous chloride. " Amines add to allenes in the presence of a palladium catalyst. ... [Pg.1045]

Kotschy et al. also reported a palladium/charcoal-catalyzed Sono-gashira reaction in aqueous media. In the presence of Pd/C, Cul, PPI13, and z -Pr2NH base, terminal alkynes smoothly reacted with aryl bromides or chlorides, such as 2-pyridyl chloride, 4-methylphenyl bromide, and so on, to give the expected alkyne products in dimethyl-acetamide (DMA)-H20 solvent. Wang et al. reported an efficient cross-coupling of terminal alkynes with aromatic iodides or bromides in the presence of palladium/charcoal, potassium fluoride, cuprous iodide, and triph-enylphosphine in aqueous media (THF/H20, v/v, 3/1) at 60°C.35 The palladium powder is easily recovered and is effective for six consecutive runs with no significant loss of catalytic activity. [Pg.108]

A palladium catalyst with a less electron-rich ligand, 2,2-dipyridyl-methylamine-based palladium complexes (4.2), is effective for coupling of aryl iodides or bromides with terminal alkynes in the presence of pyrrolidine and tetrabutylammonium acetate (TBAB) at 100°C in water.37 However, the reactions were shown to be faster in NMP solvent than in water under the reaction conditions. Palladium-phosphinous acid (POPd) was also reported as an effective catalyst for the Sonogashira cross-coupling reaction of aryl alkynes with aryl iodides, bromides, or chlorides in water (Eq. 4.18).38... [Pg.109]

A variety of triazole-based monophosphines (ClickPhos) 141 have been prepared via efficient 1,3-dipolar cycloaddition of readily available azides and acetylenes and their palladium complexes provided excellent yields in the amination reactions and Suzuki-Miyaura coupling reactions of unactivated aryl chlorides <06JOC3928>. A novel P,N-type ligand family (ClickPhine) is easily accessible using the Cu(I)-catalyzed azide-alkyne cycloaddition reaction and was tested in palladium-catalyzed allylic alkylation reactions <06OL3227>. Novel chiral ligands, (S)-(+)-l-substituted aryl-4-(l-phenyl) ethylformamido-5-amino-1,2,3-triazoles 142,... [Pg.229]

Scheme 6.54 Palladium-catalyzed acylation ofterminal alkynes with acid chlorides. Scheme 6.54 Palladium-catalyzed acylation ofterminal alkynes with acid chlorides.

See other pages where Alkynes palladium® chloride is mentioned: [Pg.288]    [Pg.567]    [Pg.415]    [Pg.1062]    [Pg.276]    [Pg.1119]    [Pg.316]    [Pg.1417]    [Pg.290]    [Pg.437]    [Pg.191]    [Pg.21]    [Pg.485]    [Pg.192]    [Pg.97]    [Pg.152]    [Pg.127]    [Pg.145]    [Pg.452]    [Pg.128]    [Pg.79]    [Pg.392]    [Pg.28]   
See also in sourсe #XX -- [ Pg.503 ]




SEARCH



Additions alkynes, palladium chloride

Alcohols alkynes, palladium®) chloride

Alkynes amines, palladium®) chloride

Alkynes carboxylic acids, palladium®) chloride

Alkynic chloride

Palladium alkynes

Palladium chloride

Palladium chloride alkyne trimerization

© 2024 chempedia.info