Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anions, alkyne, reactions

Terminal alkynes can be converted readily into alkynylsilanes by reaction of the corresponding alkyne anion or its metalloid equivalent with a suitable chlorosilane (/). The reverse reaction, that of liberation of the alkyne, is quite facile, being effected by several reagent combinations, including hydroxide ion, methanolysis, fluoride anion, silver(i) followed by cyanide anion, and methyl lithium-lithium bromide (2). [Pg.117]

Oshima et al. explored a cationic rhodium-catalyzed intramolecular [4+2] annulation of l,3-dien-8-ynes in water in the presence of sodium dodecyl sulfate (SDS), an anionic surfactant.132 When the substrate l,3-dien-8-yne was a terminal alkyne, the reaction provided an inter-molecular [2+2+2] product (Eq. 4.68). In water, a reactive cationic rhodium species was formed by the dissociation of the Rh-Cl bond in the presence of SDS. The SDS forms negatively charged micelles, which would concentrate the cationic rhodium species (Scheme 4.15). [Pg.137]

CuBr/QUINAP System The CuBr/QUlNAP system was initially used in the enan-tioselective synthesis of proparyl amines via the reaction of alkynes and enamines (Scheme 5.5). It was rationalized that the enamines reacted with protons in terminal alkynes in the presence of copper catalyst to form zwitterionic intermediates in which both the generated iminiums and alkyne anions coordinate to the copper metal center. After an intermolecular transfer of the alkyne moiety to the iminium ion, the desired products were released and the catalyst was regenerated. The combination of CuBr as catalyst and the chiral ligand QUEMAP is crucial for the good reactivities and enantioselectivities seen in the reaction. Another potential... [Pg.132]

Pentaazadienes, structure, 32 171-172 Pentaborane(9) reaction of with alkynes, 26 74 Pentacarbonyltungstenhydrogen sulfide anion, reaction with hexafluoroacetone, 30 297 Penta-coordinate complexes, 4 175-178 Pentacyanides... [Pg.228]

The alkyne insertion reaction is terminated by anion capture. As examples of the termination by the anion capture, the alkenylpalladium intermediate 189, formed by the intramolecular insertion of 188, is terminated by hydrogenolysis with formic acid to give the terminal alkene 192. Palladium formate 190 is formed, and decarboxylated to give the hydridopalladium 191, reductive elimination of which gives the alkene 192 [81]. Similarly the intramolecular insertion of 193 is terminated by transmetallation of 194 with the tin acetylide 195 (or alkynyl anion capture) to give the dienyne 196 [82], Various heterocyclic compounds are prepared by heteroannulation using aryl iodides 68 and 69, and internal alkynes. Although the mechanism is not clear, alkenylpalladiums, formed by insertion of alkynes, are trapped by nucleophiles... [Pg.53]

The A1 atom is thought to coordinate with the oxygen of the epoxide in the first step of these reactions. The alkyne anion then reacts intramolecularly giving the product. [Pg.222]

After addition of the alkyne anion to the alkylborane, iodination facilitates alkyl group migration from boron to carbon in a transfer that resembles the one seen in the synthesis of (Z)-alkenes described in Section B4.1. Elimination to give the product alkyne occurs under the iodination reaction conditions (Figure B4.4). [Pg.27]

The benzoate ion is the product under the reaction conditions but the alkyne anion collects a oton from a water molecule, regenerating the second hydroxide ion, which therefore is a base... [Pg.93]

The conjugate base of an alkyne is an alkyne anion (older literature refers to them as acetylides), and it is generated by reaction with a strong base and is a carbanion. It funetions as a nucleophile (a source of nucleophilic carbon) in Sn2 reactions with halides and sulfonate esters. Acetylides react with ketones, with aldehydes via nucleophilic acyl addition and with acid derivatives via nucleophilic acyl substitution. Acetylides are, therefore, important carbanion synthons for the creation of new carbon-carbon bonds. Some of the chemistry presented in this section will deal with the synthesis of alkynes and properly belongs in Chapter 2. It is presented here, however, to give some continuity to the discussion of acetylides. [Pg.575]

As noted above, alkyne anions are very useful in Sn2 reactions with alkyl halides, and in acyl addition reactions to a carbonyl.46 Alkyl halides and sulfonate esters (tosylates and mesylates primarily) serve as electrophilic substrates for acetylides. A simple example is taken from Kaiser s synthesis of niphatoxin B, in which propargyl alcohol (36) is treated with butyllithium and then the OTHP derivative of 8-bromo-1-octanol to give a 47% yield of 37.48... [Pg.579]

As with cyanide, Sn2 reactions of alkyne anions can be done with substrates other than halides or sulfonate esters. Epoxides are opened by acetylides at the less sterically hindered carbon to give an alkynyl alcohol. A synthetic example is the reaction of epoxide 38 with the indicated lithium alkyne anion gave an 85% yield of 39, an intermediate in the Sinha et al. synthesis of squamotacin.49... [Pg.579]

The other major synthetic use of alkyne anions is their reaction with ketones and aldehydes to give an alkynyl alcohol via nucleophilic acyl addition. The lithium salt of 1-propyne, for example, reacted with aldehyde 40 to give alcohol 41 as part of Smith s synthesis of (+)-acutiphycin.50 The reaction is selective for ketones and aldehydes in the presence of acid derivatives, if the acetylide is not present in large excess. l... [Pg.579]


See other pages where Anions, alkyne, reactions is mentioned: [Pg.178]    [Pg.128]    [Pg.800]    [Pg.96]    [Pg.800]    [Pg.78]    [Pg.1309]    [Pg.552]    [Pg.73]    [Pg.358]    [Pg.358]    [Pg.133]    [Pg.319]    [Pg.548]    [Pg.577]    [Pg.579]    [Pg.579]   
See also in sourсe #XX -- [ Pg.578 , Pg.579 ]




SEARCH



Alkyne anions

© 2024 chempedia.info