Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation catalysts for

Efficient mixing of the hydrocarbon and acid is desirable to keep the acid catalyst as nearly saturated as possible with isobutane, and in as high a concentration as possible. The solubility of isobutane in the acid catalyst increases with decreased water content (26) and increased polymer content. Thus, it should be possible to have a higher concentration of isobutane in the SARP alkylation catalyst for a given titratable acidity, and it should be possible to maintain a higher concentration of isobutane in the catalyst. [Pg.299]

Figure 11 Well-defined cationic chromium alkyl catalysts for ethylene polymerisation... Figure 11 Well-defined cationic chromium alkyl catalysts for ethylene polymerisation...
Hazardous Decomp. Prods. Heated to decomp, or reacted with water or steam, emits toxic and corrosive fumes of Br" and HBr NFPA Health 1, Flammability 4, Reactivity 4 Storage Light-sensitive protect from light Uses Analytical chemistry solvent for ore minerals mfg. of inorganic and some alkyl bromides source of bromide alkylation catalyst for soldering flux raw material for pure terephthalic acid, photographic chems., dyes, pharmaceuticals Manuf./Distrib. Advance Research Chems. Advanced Synthesis Tech. http.//WWW. advancedsynthesis. com, Al bemarle http //www.albemarle.com, Aldrich http //www.sigma-aldrich.com, Alfa Aesar http //WWW. aifa. com... [Pg.2060]

Tertiary, benzyl, and aHyhc nitro compounds can also be used as Friedel-Crafts alkylating agents eg, reaction of (CH2)3CN02 (2-nitro-2-methyl propane [594-70-7]) with anisole in the presence of SnCl gives 4-/-butylanisole [5396-38-3] (7). SoHd acids, such as perfluorodecanesulfonic acid [335-77-3], and perfluorooctanesulfonic acid [1763-23-1] have been used as catalysts for regio-selective alkylations (8). [Pg.551]

Al—Ti Catalyst for cis-l,4-PoIyisoprene. Of the many catalysts that polymerize isoprene, four have attained commercial importance. One is a coordination catalyst based on an aluminum alkyl and a vanadium salt which produces /n j -l,4-polyisoprene. A second is a lithium alkyl which produces 90% i7j -l,4-polyisoprene. Very high (99%) i7j -l,4-polyisoprene is produced with coordination catalysts consisting of a combination of titanium tetrachloride, TiCl, plus a trialkyl aluminum, R Al, or a combination of TiCl with an alane (aluminum hydride derivative) (86—88). [Pg.467]

Another group of isoprene polymerization catalysts is based on alanes and TiCl. In place of alkyl aluminum, derivatives of AlH (alanes) are used and react with TiCl to produce an active catalyst for the polymerization of isoprene. These systems are unique because no organometaHic compound is involved in producing the active species from TiCl. The substituted alanes are generally complexed with donor molecules of the Lewis base type, and they are Hquids or soHds that are soluble in aromatic solvents. The performance of catalysts prepared from AlHCl20(C2H )2 with TiCl has been reported (101). [Pg.467]

Uses. Magnesium alkyls are used as polymerization catalysts for alpha-alkenes and dienes, such as the polymerization of ethylene (qv), and in combination with aluminum alkyls and the transition-metal haUdes (16—18). Magnesium alkyls have been used in conjunction with other compounds in the polymerization of alkene oxides, alkene sulfides, acrylonitrile (qv), and polar vinyl monomers (19—22). Magnesium alkyls can be used as a Hquid detergents (23). Also, magnesium alkyls have been used as fuel additives and for the suppression of soot in combustion of residual furnace oil (24). [Pg.340]

Future Trends. In addition to the commercialization of newer extraction/ decantation product/catalyst separations technology, there have been advances in the development of high reactivity 0x0 catalysts for the conversion of low reactivity feedstocks such as internal and a-alkyl substituted a-olefins. These catalysts contain (as ligands) ortho-/-butyl or similarly substituted arylphosphites, which combine high reactivity, vastiy improved hydrolytic stabiUty, and resistance to degradation by product aldehyde, which were deficiencies of eadier, unsubstituted phosphites. Diorganophosphites (28), such as stmcture (6), have enhanced stabiUty over similarly substituted triorganophosphites. [Pg.470]

Koch Chemical Company is the only U.S. suppHer of all PMBs (except hexamethylbenzene). Its process has the flexibility of producing isodurene, prehnitene, and pentamethylbenzene, should a market develop. Koch s primary process (20) is based on isomerization, alkylation, and disproportionation conducted in the presence of a Friedel-Crafts catalyst. For the synthesis of mesitylene and hemimellitene, pseudocumene is isomerized. If durene, isodurene, or prehnitene and pentamethylbenzene are desired, pseudocumene is alkylated with methyl chloride (see Alkylation Friedel-CRAFTSreactions). [Pg.506]

Future Developments. The most recent advance in detergent alkylation is the development of a soHd catalyst system. UOP and Compania Espanola de Petroleos SA (CEPSA) have disclosed the joint development of a fixed-bed heterogeneous aromatic alkylation catalyst system for the production of LAB. Petresa, a subsidiary of CEPSA, has announced plans for the constmction of a 75,000 t/yr LAB plant in Quebec, Canada, that will use the UOP / -paraffin dehydrogenation process and the new fixed-bed alkylation process (85). [Pg.52]

Catalysts. Nearly aU. of the industrially significant aromatic alkylation processes of the past have been carried out in the Hquid phase with unsupported acid catalysts. For example, AlCl HF have been used commercially for at least one of the benzene alkylation processes to produce ethylbenzene (104), cumene (105), and detergent alkylates (80). Exceptions to this historical trend have been the use of a supported boron trifluoride for the production of ethylbenzene and of a soHd phosphoric acid (SPA) catalyst for the production of cumene (59,106). [Pg.53]

Because of their initial commercial success and the industry s growing awareness of environmental issues, soHd acid catalysts are expected to ultimately replace Hquid acid catalysts. Several pubHcations describe the use of soHd acid catalysts for the production of cumene and detergent alkylates (62,85-87,109). [Pg.53]

All lation of Aromatic Amines and Pyridines. Commercially important aromatic amines are aniline [62-53-3] toluidine [26915-12-8], phenylenediamines [25265-76-3], and toluenediamines [25376-45-8] (see Amines, aromatic). The ortho alkylation of these aromatic amines with olefins, alcohols, and dienes to produce more valuable derivatives can be achieved with soHd acid catalysts. For instance, 5-/ f2 butyl-2,4-toluenediamine (C H gN2), which is used for performance polymer appHcations, is produced at 85% selectivity and 84% 2,4-toluenediamine [95-80-7] (2,4-4L)A)... [Pg.54]

Allyl Glycidyl Ether. This ether is used mainly as a raw material for silane coupling agents and epichlorohydrin mbber. Epichlorohydrin mbber is synthesized by polymerizing the epoxy group of epichlorohydrin, ethylene oxide, propylene oxide, and aHyl glycidyl ether, AGE, with an aluminum alkyl catalyst (36). This mbber has high cold-resistance. [Pg.77]

Dimethylaminopyridine [1122-58-3] (DMAP) (24) has emerged as the preferred catalyst for a variety of synthetic transformations under mild conditions, particularly acylations, alkylations, silylations, esterifications, polymeri2ations, and rearrangements (100). POLYDMAP resin [1122-58-3], a polymeric version of DMAP, is available, and is as effective as DMAP as a catalyst for acylation reactions. Furthermore, it can be recycled without regeneration more than 20 times with very Htde loss in activity. POLYDMAP is a trademark of Reilly Industries, Inc. [Pg.337]

Chemical Properties. MSA combines high acid strength with low molecular weight. Its pK (laser Raman spectroscopy) is —1.9, about twice the acid strength of HCl and half the strength of sulfuric acid. MSA finds use as catalyst for esterification, alkylation, and in the polymerisation and curing of coatings (402,404,405). The anhydrous acid is also usefijl as a solvent. [Pg.154]

In the petroleum (qv) industry hydrogen bromide can serve as an alkylation catalyst. It is claimed as a catalyst in the controlled oxidation of aHphatic and ahcycHc hydrocarbons to ketones, acids, and peroxides (7,8). AppHcations of HBr with NH Br (9) or with H2S and HCl (10) as promoters for the dehydrogenation of butene to butadiene have been described, and either HBr or HCl can be used in the vapor-phase ortho methylation of phenol with methanol over alumina (11). Various patents dealing with catalytic activity of HCl also cover the use of HBr. An important reaction of HBr in organic syntheses is the replacement of aHphatic chlorine by bromine in the presence of an aluminum catalyst (12). Small quantities of hydrobromic acid are employed in analytical chemistry. [Pg.291]


See other pages where Alkylation catalysts for is mentioned: [Pg.168]    [Pg.405]    [Pg.958]    [Pg.85]    [Pg.558]    [Pg.51]    [Pg.168]    [Pg.405]    [Pg.958]    [Pg.85]    [Pg.558]    [Pg.51]    [Pg.134]    [Pg.46]    [Pg.229]    [Pg.393]    [Pg.639]    [Pg.281]    [Pg.171]    [Pg.230]    [Pg.236]    [Pg.565]    [Pg.565]    [Pg.472]    [Pg.387]    [Pg.114]    [Pg.483]    [Pg.412]    [Pg.439]    [Pg.48]    [Pg.128]    [Pg.478]    [Pg.125]    [Pg.208]   
See also in sourсe #XX -- [ Pg.215 , Pg.230 , Pg.263 , Pg.264 ]

See also in sourсe #XX -- [ Pg.92 , Pg.235 , Pg.257 ]




SEARCH



Alkyl catalysts

Alkylation catalysts

Friedel-Crafts alkylation reactions catalysts for

Hydrogen fluoride, catalyst for alkylations

© 2024 chempedia.info