Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl with acetylide anions

The major limitation to this reaction is that synthetically acceptable yields are obtained only with methyl halides and primary alkyl halides Acetylide anions are very basic much more basic than hydroxide for example and react with secondary and ter tiary alkyl halides by elimination... [Pg.372]

Under the same conditions simple etiolates react vigorously with alkyl halides (which must be primary) to give mono- and polyalkylated products. The reactivity of the simple enolate is greater and cannot be controlled at room temperature. However, if the alkylation is carried out at low temperature, the reaction can be controlled and smooth monoalkylation of simple enolates can be achieved. The same is true for the alkylation of acetylide anions, which must be carried out at low temperature for successful alkylation. [Pg.228]

Finally, acetylide anions have been alkylated with propargyl halides to give excellent yields of dialkynes643,644. Similar reactions have been used in the synthesis of a wide variety of natural products including lactones and macrolides645,646 and leukotrienes647-651. With many halides, reaction with acetylide anions is not useful however, due to elimination side-reactions caused by the significant basicity of the carbanion. [Pg.739]

Terminal alkynes are weakly acidic. The alkyne hydrogen can he removed by s strong base 9uch ae Na NH.. to yield nn a<%tylide anipn An acetylide anion ads as a nucleophile and can displace a halide ion from a primary alkyl halide in a n alkylation reaction. Acetylide anions are more stable iJian either alkyl anions or vinylic anions because their m ative charge is in a hybrid orbital with 50% s character, allowing the charge to be doser to the nucleus. [Pg.317]

Although nucleophilic substitution with acetylide anions is a very valuable carbon-carbon bondforming reaction, it has the same limitations as any Sn2 reaction. Steric hindrance around the leaving group causes 2° and 3° alkyl halides to undergo elimination by an E2 mechanism, as shown with 2-bromo-2-methylpropane. Thus, nucleophilic substitution with acetylide anions forms new carbon-carbon bonds in high yield only with unhindered CH3X and 1 ° alkyl halides. [Pg.416]

Step [3] B is prepared from acetylene and two 1 alkyl halides (C and D) by using Sn2 reactions with acetylide anions. [Pg.440]

Solution First alkylate the acetylide anion of 1-pentyne with 1-bromopropane to add three carbons, and then reduce the product using catal3rtic hydrogenation j... [Pg.292]

Because of the ready availability of acetylene and the ease with which it is converted to a nucleophile, alkylation of acetylide anions is the most convenient laboratory method used for the synthesis of other alkynes. The process can be repeated, and a terminal alkyne in turn can be converted to an internal alkyne. An important feature of this reaction is that a new carbon-carbon skeleton can be made, allowing for the construction of larger carbon skeletons from smaller ones. In the following scheme, the carbon skeleton of 3-heptyne is constructed from acetylene and two lower-molecular-weight haloalkanes. [Pg.156]

A. Alkylation of Acetylide Anions with Methyl and 1° Haloalkanes... [Pg.311]

Trimethylsilylallenes behave as propargylic anion equivalents during the titanium tetrachloride catalysed addition to carbonyl compounds, leading to homopropargylic carbinols. This new approach should prove useful in the synthesis of branched acetylenes which are not accessible via alkylation of acetylide anions with alkyl halides and epoxides (Scheme 23). ... [Pg.218]

The proton of terminal acetylenes is acidic (pKa= 25), thus they can be deprotonated to give acetylide anions which can undergo substitution reactions with alkyl halides, carbonyls, epoxides, etc. to give other acetylenes. [Pg.115]

Alkynyl anions are more stable = 22) than the more saturated alkyl or alkenyl anions (p/Tj = 40-45). They may be obtained directly from terminal acetylenes by treatment with strong base, e.g. sodium amide (pA, of NH 35). Frequently magnesium acetylides are made in proton-metal exchange reactions with more reactive Grignard reagents. Copper and mercury acetylides are formed directly from the corresponding metal acetates and acetylenes under neutral conditions (G.E. Coates, 1977 R.P. Houghton, 1979). [Pg.5]

The only common synthons for alkynes are acetylide anions, which react as good nucleophiles with alkyl bromides (D.E. Ames, 1968) or carbonyl compounds (p. 52, 62f.). [Pg.36]

These compounds are sources of the nucleophilic anion RC=C and their reaction with primary alkyl halides provides an effective synthesis of alkynes (Section 9 6) The nucleophilicity of acetylide anions is also evident m their reactions with aldehydes and ketones which are entirely analogous to those of Grignard and organolithium reagents... [Pg.597]

Figure 8.5 A comparison of alkyl, vinylic, and acetylide anions. The acetylide anion, with sp hybridization, has more s character and is more stable. Electrostatic potential maps show that placing the negative charge closer to the carbon nucleus makes carbon appear less negative (red). Figure 8.5 A comparison of alkyl, vinylic, and acetylide anions. The acetylide anion, with sp hybridization, has more s character and is more stable. Electrostatic potential maps show that placing the negative charge closer to the carbon nucleus makes carbon appear less negative (red).
The negative charge and unshared electron pair on carbon make an acetylide anion strongly nucleophilic. As a result, an acetylide anion can react with an alkyl halide such as bromomethane to substitute for the halogen and yield a new alkyne product. [Pg.272]

Active Figure 8.6 MECHANISM A mechanism for the alkylation reaction of acetylide anion with bromomethane to give propyne. Sign in afwww.thomsonedu.com to see a simulation based on this figure and to take a short quiz. [Pg.272]

The alkylation reaction is limited to the use of primary alkyl bromides and alkyl iodides because acetylide ions are sufficiently strong bases to cause dehydrohalogenation instead of substitution when they react with secondary and tertiary alkyl halides. For example, reaction of bromocyclohexane with propyne anion yields the elimination product cyclohexene rather than the substitution product 1-propynylcyclohexane. [Pg.273]

Strategy Compare the product with the starting material, and catalog the differences. In this case, we need to add three carbons to the chain and reduce the triple bond. Since the starling material is a terminal alkyne that can be alkylated, we might first prepare the acetylide anion ol 1-pentyne, let it react with 1-bromopropane, and then reduce the product using catalytic hydrogenation. [Pg.274]

An alkyne is a hydrocarbon that contains a carbon-carbon triple bond. Alkyne carbon atoms are sp-hybridized, and the triple bond consists of one sp-sp a bond and two p-p tt bonds. There are relatively few general methods of alkyne synthesis. Two good ones are the alkylation of an acetylide anion with a primary-alkyl halide and the twofold elimination of HX from a vicinal dihalide. [Pg.279]

A wide array of substances can be prepared using nucleophilic substitution reactions. In fact, we ve already seen examples in previous chapters. The reaction of an acetylide anion with an alkyl halide (Section 8.8), for instance, is an Sn2 reaction in which the acetylide nucleophile replaces halide. [Pg.367]

Here too, a second alkylation can be made to take place yielding RC=CR or R C=CR. It should, however, be remembered that the above carbanions—particularly the acetylide anion (57)—are the anions of very weak acids, and are thus themselves strong bases, as well as powerful nucleophiles. They can thus induce elimination (p. 260) as well as displacement, and reaction with tertiary halides is often found to result in alkene formation to the exclusion of alkylation. [Pg.289]

Z,9S,10 )-9,10-Epoxyhenicos-6-ene (13) is the female sex pheromone of moths such as ruby tiger moth (Phragmatobiafuliginosa), fruit-piercing moth (Oraesia excavata), and painted apple moth (Teia anartoides). Scheme 23 summarizes Shi s synthesis of 13 based on Sharpless asymmetric dihydroxylation (AD) [36]. Mori synthesized 13 employing lipase to prepare A (Scheme 24) [37]. Alkylation of the acetylide anion C was possible neither with tosylate nor with iodide, but triflate B could alkylate C to give D. [Pg.18]


See other pages where Alkyl with acetylide anions is mentioned: [Pg.280]    [Pg.280]    [Pg.280]    [Pg.550]    [Pg.271]    [Pg.48]   
See also in sourсe #XX -- [ Pg.195 ]




SEARCH



Acetylide

Acetylide anion alkylation

Acetylide anions reactions with alkyl halides

Acetylides

Alkyl halides with acetylide anions

Alkylate anions

Anions alkylation

Secondary alkyl halides acetylide anion reactions with

© 2024 chempedia.info