Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation acetylide anions

Alkyne Acidity Formation of Acetylide Anions Alkylation of Acetylide Anions 289... [Pg.7]

The proton of terminal acetylenes is acidic (pKa= 25), thus they can be deprotonated to give acetylide anions which can undergo substitution reactions with alkyl halides, carbonyls, epoxides, etc. to give other acetylenes. [Pg.115]

The only common synthons for alkynes are acetylide anions, which react as good nucleophiles with alkyl bromides (D.E. Ames, 1968) or carbonyl compounds (p. 52, 62f.). [Pg.36]

The major limitation to this reaction is that synthetically acceptable yields are obtained only with methyl halides and primary alkyl halides Acetylide anions are very basic much more basic than hydroxide for example and react with secondary and ter tiary alkyl halides by elimination... [Pg.372]

These compounds are sources of the nucleophilic anion RC=C and their reaction with primary alkyl halides provides an effective synthesis of alkynes (Section 9 6) The nucleophilicity of acetylide anions is also evident m their reactions with aldehydes and ketones which are entirely analogous to those of Grignard and organolithium reagents... [Pg.597]

Figure 8.5 A comparison of alkyl, vinylic, and acetylide anions. The acetylide anion, with sp hybridization, has more s character and is more stable. Electrostatic potential maps show that placing the negative charge closer to the carbon nucleus makes carbon appear less negative (red). Figure 8.5 A comparison of alkyl, vinylic, and acetylide anions. The acetylide anion, with sp hybridization, has more s character and is more stable. Electrostatic potential maps show that placing the negative charge closer to the carbon nucleus makes carbon appear less negative (red).
The negative charge and unshared electron pair on carbon make an acetylide anion strongly nucleophilic. As a result, an acetylide anion can react with an alkyl halide such as bromomethane to substitute for the halogen and yield a new alkyne product. [Pg.272]

Active Figure 8.6 MECHANISM A mechanism for the alkylation reaction of acetylide anion with bromomethane to give propyne. Sign in afwww.thomsonedu.com to see a simulation based on this figure and to take a short quiz. [Pg.272]

Strategy Compare the product with the starting material, and catalog the differences. In this case, we need to add three carbons to the chain and reduce the triple bond. Since the starling material is a terminal alkyne that can be alkylated, we might first prepare the acetylide anion ol 1-pentyne, let it react with 1-bromopropane, and then reduce the product using catalytic hydrogenation. [Pg.274]

An alkyne is a hydrocarbon that contains a carbon-carbon triple bond. Alkyne carbon atoms are sp-hybridized, and the triple bond consists of one sp-sp a bond and two p-p tt bonds. There are relatively few general methods of alkyne synthesis. Two good ones are the alkylation of an acetylide anion with a primary-alkyl halide and the twofold elimination of HX from a vicinal dihalide. [Pg.279]

A wide array of substances can be prepared using nucleophilic substitution reactions. In fact, we ve already seen examples in previous chapters. The reaction of an acetylide anion with an alkyl halide (Section 8.8), for instance, is an Sn2 reaction in which the acetylide nucleophile replaces halide. [Pg.367]

DNA sequencing and. 1113 Electrospray ionization (ESI) mass spectrometry, 417-418 Electrostatic potential map, 37 acetaldehyde, 688 acetamide, 791,922 acetate ion. 43. 53, 56, 757 acetic acid. 53. 55 acetic acid dimer, 755 acetic anhydride, 791 acetone, 55, 56. 78 acetone anion, 56 acetyl azide, 830 acetyl chloride, 791 acetylene. 262 acetylide anion, 271 acid anhydride, 791 acid chloride, 791 acyl cation, 558 adenine, 1104 alanine, 1017 alanine zwitterion, 1017 alcohol. 75 alkene, 74, 147 alkyl halide, 75 alkyne. 74... [Pg.1295]

Here too, a second alkylation can be made to take place yielding RC=CR or R C=CR. It should, however, be remembered that the above carbanions—particularly the acetylide anion (57)—are the anions of very weak acids, and are thus themselves strong bases, as well as powerful nucleophiles. They can thus induce elimination (p. 260) as well as displacement, and reaction with tertiary halides is often found to result in alkene formation to the exclusion of alkylation. [Pg.289]

Z,9S,10 )-9,10-Epoxyhenicos-6-ene (13) is the female sex pheromone of moths such as ruby tiger moth (Phragmatobiafuliginosa), fruit-piercing moth (Oraesia excavata), and painted apple moth (Teia anartoides). Scheme 23 summarizes Shi s synthesis of 13 based on Sharpless asymmetric dihydroxylation (AD) [36]. Mori synthesized 13 employing lipase to prepare A (Scheme 24) [37]. Alkylation of the acetylide anion C was possible neither with tosylate nor with iodide, but triflate B could alkylate C to give D. [Pg.18]

The acetylide anion acting as a Lewis base is attracted to the partially positive carbon of the 1° alkyl halide. [Pg.175]

Under the same conditions simple etiolates react vigorously with alkyl halides (which must be primary) to give mono- and polyalkylated products. The reactivity of the simple enolate is greater and cannot be controlled at room temperature. However, if the alkylation is carried out at low temperature, the reaction can be controlled and smooth monoalkylation of simple enolates can be achieved. The same is true for the alkylation of acetylide anions, which must be carried out at low temperature for successful alkylation. [Pg.228]

Finally, acetylide anions have been alkylated with propargyl halides to give excellent yields of dialkynes643,644. Similar reactions have been used in the synthesis of a wide variety of natural products including lactones and macrolides645,646 and leukotrienes647-651. With many halides, reaction with acetylide anions is not useful however, due to elimination side-reactions caused by the significant basicity of the carbanion. [Pg.739]

Remember to work backward. The target ketone has five carbons, whereas the designated starting material has only three, so it is necessary to form a carbon-carbon bond. A nucleophilic substitution reaction can be done at C-l of 1-chloropropane. so a two-carbon nucleophile that can be ultimately converted to a ketone is required. A carbon-carbon bond-forming reaction that meets these requirements is the alkylation of an acetylide anion (see Section 10.8). Once the carbon-carbon bond has been formed, hydration of the alkyne can be used to convert the triple bond to a ketone ... [Pg.432]


See other pages where Alkylation acetylide anions is mentioned: [Pg.182]    [Pg.182]    [Pg.271]    [Pg.272]    [Pg.273]    [Pg.279]    [Pg.280]    [Pg.280]    [Pg.281]    [Pg.1285]    [Pg.289]    [Pg.175]    [Pg.79]    [Pg.289]    [Pg.359]    [Pg.362]    [Pg.75]    [Pg.45]    [Pg.370]   
See also in sourсe #XX -- [ Pg.272 ]

See also in sourсe #XX -- [ Pg.272 ]

See also in sourсe #XX -- [ Pg.293 ]




SEARCH



Acetylide

Acetylide anions reactions with alkyl halides

Acetylides

Alkyl halides with acetylide anions

Alkyl with acetylide anions

Alkylate anions

Alkylation of Acetylide Anions

Anions alkylation

Secondary alkyl halides acetylide anion reactions with

© 2024 chempedia.info