Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl halides Sodium iodide

Hennis and coworkers reported that the reaction of carboxylates with alkyl chlorides is catalyzed by tertiary amines, the combination of tertiary amines and sodium iodide or quaternary ammonium compounds [3, 4]. It was found that the ester formation was catalyzed by quaternary ammonium salts and that these were generated in situ from the amine and alkyl halide. Sodium iodide in 2-butanone converted the alkyl chloride to the more reactive iodide (the Finkelstein reaction) which in turn alkylated amine. Alkyl iodides added directly to the reaction mixture were even more active co-catalysts but the preformed quaternary ammonium salt was the most effective catalyst. It was suggested that the enhanced solubility of the quaternary ammonium carboxylate or the lack of tight ion pairing in this salt might account for the... [Pg.86]

Halide exchange, sometimes call the Finkelstein reaction, is an equilibrium process, but it is often possible to shift the equilibrium." The reaction is most often applied to the preparation of iodides and fluorides. Iodides can be prepared from chlorides or bromides by taking advantage of the fact that sodium iodide, but not the bromide or chloride, is soluble in acetone. When an alkyl chloride or bromide is treated with a solution of sodium iodide in acetone, the equilibrium is shifted by the precipitation of sodium chloride or bromide. Since the mechanism is Sn2, the reaction is much more successful for primary halides than for secondary or tertiary halides sodium iodide in acetone can be used as a test for primary bromides or chlorides. Tertiary chlorides can be converted to iodides by treatment with excess Nal in CS2, with ZnCl2 as catalyst. " Vinylic bromides give vinylic iodides with retention of configuration when treated with KI and a nickel bromide-zinc catalyst," or with KI and Cul in hot HMPA." ... [Pg.517]

Preparation. Tetraalkylammonium borohydrides can be prepared by addition of a slight excess of sodium borohydride to a solution or suspension of a tetraalkylammonium hydrogen sulfate in an aqueous solution of NaOH. The resulting tetraalkylammonium borohydride is extracted with methylene chloride. The solid salt can be obtained by evaporation of the methylene chloride and crystallization from ethyl acetate. These salts are mild reducing agents. They are converted into diborane and a tetraalkylammonium halide by treatment in methylene chloride with an alkyl halide (methyl iodide, ethyl bromide). The advantage of generation of diborane in this way is that anhydrous methylene chloride is easily obtained. [Pg.564]

The tertiary nature of the nitrogen in this strong base is demonstrated by its quantitative reaction with one mole of alkyl halide (methyl iodide (21), ethyl iodide (14) ) with the formation of quaternary salts. Secondly, the isolation of methylamine as one of the products of fusion of tropine with alkali (sodium hydroxide (22), barium hydroxide (14) ) suggests the... [Pg.277]

When the sodium derivative, which is used in ethanol it solution without intermediate isolation, is boiled with an alkyl halide, e.g., methyl iodide,... [Pg.269]

Substitution Derivatives of Ethyl Malonate, Ethyl malonate resembles ethyl acetoacetate in that it gives rise to mono- and di-substituted derivatives in precisely similar circumstances. Thus when ethanolic solutions of ethyl malonate and of sodium ethoxide are mixed, the sodium derivative (A) of the enol form is produced in solution. On boiling this solution with an alkyl halide, e.g, methyl iodide, the methyl derivative (B) of the keto form is obtained. When this is treated again in ethanolic solution with sodium ethoxide, the... [Pg.275]

Where R and R are identical, the dialkylmalonic ester may be prepared in one operation by treating 1 mol of ethyl malonate with 2 mots each of sodium ethoxide and the alkyl halide (usually bromide or iodide). [Pg.484]

When It IS necessary to prepare secondary alkyl halides with assurance that no trace of rearrangement accompanies their formation the corresponding alcohol is first converted to its p toluenesulfonate ester and this ester is then allowed to react with sodium chloride bromide or iodide as described m Section 8 14... [Pg.355]

Alkylation at the ind-N of l,2,3,4-tetrahydro-j8-carbolines has been carried out with alkyl halide after treatment with sodamide in the usual manner. Cyanoethylation of a p /r-V-substituted tetrahydro-jS-carboline in the presence of Triton B yields the corresponding 9-cyanoethyl derivative. Similarly, treatment of p / -V-methyl-l,2,3,4,4a,9b-hexahydro-y-carboline with sodamide, followed by benzyl chloride, leads to the ind-A -benzyl-substituted derivatives. l-Oxo-l,2,3,4-tetrahydro-j8-carboline yields the ind-A -methyl derivative directly with dimethyl sulfate.Prolonged treatment with sodium hydride, followed by methyl iodide, yields the 2,9-dimethyl derivative. Heating with sodium hydride in acetone followed by the addition of dimethyl sulfate gives rise to the ind-V-methyl derivative. ... [Pg.162]

Differences in solubility of the reactants may for example be utilized as follows. Sodium iodide is much more soluble in acetone than are sodium chloride or sodium bromide. Upon treatment of an alkyl chloride or bromide with sodium iodide in acetone, the newly formed sodium chloride or bromide precipitates from the solution and is thus removed from equilibrium. Alkyl iodides can be conveniently prepared in good yields by this route. Alkyl bromides are more reactive as the corresponding chlorides. Of high reactivity are a-halogen ketones, a-halogen carboxylic acids and their derivatives, as well as allyl and benzyl halides. [Pg.113]

Somewhat similar observations have been made in the reaction of alkyl halides with sodium mirrors (the Wurtz reaction) in which alkyl coupling occurs. Thus, ethane formed on treatment of methyl iodide with sodium in a field of 20 G shows n.m.r. emission (Garst and Cox, 1970). The phase is consistent with polarization via T j-S mixing,... [Pg.113]

Sodium nitrite can be used to form nitro compounds with primary or secondary alkyl bromides or iodides, though the method is of limited scope. Silver nitrite gives nitro compounds only when RX is a primary bromide or iodide. Nitrite esters are an important side product in all these cases (10-33) and become the major product (by an SnI mechanism) when secondary or tertiary halides are treated with silver nitrite. [Pg.515]

The reaction of alkyl halides with metal nitrites is one of the most important methods for the preparation of nitroalkanes. As a metal nitrite, silver nitrite (Victor-Meyer reaction), potassium nitrite, or sodium nitrite (Kornblum reaction) have been frequently used. The products are usually a mixture of nitroalkanes and alkyl nitrites, which are readily separated by distillation (Eq. 2.47). The synthesis of nitro compounds by this process is well documented in the reviews, and some typical cases are listed in Table 2.3.92a Primary and secondary alkyl iodides and bromides as well as sulfonate esters give the corresponding nitro compounds in 50-70% yields on treatment with NaN02 in DMF or DMSO. Some of them are described precisely in vol 4 of Organic Synthesis. For example, 1,4-dinitrobutane is prepared in 41 -46% yield by the reaction of 1,4-diiodobutane with silver nitrite in diethyl ether.92b 1-Nitrooctane is prepared by the reaction with silver nitrite in 75-80% yield. The reaction of silver nitrite with secondary halides gives yields of nitroalkanes of about 15%, whereas with tertiary halides the yields are 0-5%.92c Ethyl a-nitrobutyrate is prepared by the reaction of ethyl a-bromobutyrate in 68-75% yield with sodium nitrite in DMF.92d Sodium nitrite is considerably more soluble in DMSO than in DMF as a consequence, with DMSO, much more concentrated solutions can be employed and this makes shorter reaction times possible.926... [Pg.17]

Alkylation of 1-alkynes with alkyl halides was carefully examined by Chong [11]. Alkynes could be alkylated easily in the absence of HMPA by treatment with n-butyllithium followed by n-alkyl iodide in THF. In the case of bromides, a catalytic amount of tetra(n-butyl)ammonium iodide or sodium iodide should be added (Scheme 2). [Pg.7]

The N-alkylated harmine derivatives were prepared by simple alkylation of harmine anions (generated using sodium hydride) with alkyl halides and bromides. For example, 56 was prepared in 83% yield in this manner, and the N-methyl analog (which had similar antitumor activity to that of 56) was obtained in 80% yield using methyl iodide. [Pg.118]

When thioxo (or thiol) derivatives (as part of a thiourea function incorporated into the heterocyclic system) are present, effective. Y-alkylation is observed. Thus, the 3-heteroaryl-substituted [l,2,4]triazolo[3,4-/)][l,3,4]thiadiazole-6(5//)-thiones 37 dissolved in sodium hydroxide solution react with alkyl halides to afford the corresponding 6-alkylthio derivatives 38 (Equation 4) <1992IJB167>. The mesoionic compounds 39, inner salts of anhydro-7-aryl-l-methyl-3-methylthio-6-sulfonyl-[l,2,4]triazolo[4,3-A [l,2,4]triazolium hydroxides, are methylated with methyl iodide to give the corresponding quaternary salts 40 (Equation 5) <1984TL5427, 1986T2121>. [Pg.332]

As esters the alkyl halides are hydrolysed by alkalis to alcohols and salts of halogen acids. They are converted by nascent hydrogen into hydrocarbons, by ammonia into amines, by alkoxides into ethers, by alkali hydrogen sulphides into mercaptans, by potassium cyanide into nitriles, and by sodium acetate into acetic esters. (Formulate these reactions.) The alkyl halides are practically insoluble in water but are, on the other hand, miscible with organic solvents. As a consequence of the great affinity of iodine for silver, the alkyl iodides are almost instantaneously decomposed by aqueous-alcoholic silver nitrate solution, and so yield silver iodide and alcohol. The important method of Ziesel for the quantitative determination of alkyl groups combined in the form of ethers, depends on this property (cf. p. 80). [Pg.98]

In what appears, initially, to be a closely similar reaction, acid chlorides react with alkyl halides under solidtliquid two-phase conditions using sodium hydrogen carbonate in the presence of sodium iodide and tetra-n-butylammonium bromide [45]. Although the mechanism is not clear, it has been proposed that the acid chloride is initially converted into the carboxylate anion. It is also probable that the halogen interchange between the sodium iodide and the alkyl halides enhances their reactivity. Although the yields are high, the availability of the alkyl halides and alcohols are usually similar and there appears to be little to commend this process over the catalysed reaction of the acid chlorides with the alcohols. [Pg.94]

The reaction of a -halocarboxylic acids with sodium nitrite has been used to synthesize ni-tromethane, nitroethane and nitropropane, although the reaction fails for higher nitroalkanes. " A number of other reactions have been reported which use nitrite anion as a nucleophile, including (1) reaction of alkyl halides with potassium nitrite in the presence of 18-crown-6, (2) reaction of alkyl halides with nitrite anion bound to amberlite resins, (3) synthesis of 2-nitroethanol from the acid-catalyzed ring opening of ethylene oxide with sodium nitrite, and (4) reaction of primary alkyl chlorides with sodium nitrite in the presence of sodium iodide. ... [Pg.10]

Alkylations of the 4-thione substituent of l-(2,3,5-tri-0-acetyl-/3-D-ribofuranosyl)triazolo[4,5- pyridazine-4-thione 29 were carried out using sodium hydride and various alkyl halides, and the reaction with methyl iodide to give methylthio derivative 48 is shown in Scheme 32 <1996BMC1725>. [Pg.678]

Williamson ether synthesis preparation of ether The sodium or potassium alkoxides are strong bases and nucleophiles. Alkoxides (RO ) can react with primary alkyl halides to produce symmetrical or unsymmetrical ethers. This is known as Williamson ether synthesis. The reaction is limited to primary alkyl halides. Higher alkyl halides tend to react via elimination. For example, sodium ethoxide reacts with ethyl iodide to produce diethyl... [Pg.238]


See other pages where Alkyl halides Sodium iodide is mentioned: [Pg.414]    [Pg.334]    [Pg.275]    [Pg.214]    [Pg.94]    [Pg.109]    [Pg.184]    [Pg.492]    [Pg.525]    [Pg.557]    [Pg.215]    [Pg.184]    [Pg.569]    [Pg.9]    [Pg.39]    [Pg.310]    [Pg.57]    [Pg.177]    [Pg.668]    [Pg.310]    [Pg.640]    [Pg.476]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Alkyl iodides

Halides Iodides

Halides alkyl iodides

Sodium alkyl halides

Sodium iodide

© 2024 chempedia.info