Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl halides benzylic

Alkyl halide Benzylic halide Acyl halide These will not react with benzene under Friedel-Crafts conditions ... [Pg.518]

Alkyl halides Benzyl halides Benzylammonium salts Allyl halides Dialkyl sulfates a-Hafo ketones a-Halo esters a-Halonitriles Oxonium salts... [Pg.538]

Substituted pyridines.1 When LDPA is heated with an alkyl halide, benzyl chloride, bromine, or other electrophilic reagent, 3-substituted pyridines are obtained in 40-90% yield. The reaction probably involves alkylation of the 1,2-dihydropyridyl moiety of LDPA to give a 2,5-dihydropyridine, which is then oxidized to the final... [Pg.151]

A communication and full paper tell of the efficient photoreduction of 4-chlorobiphenyl to biphenyl by excitation of 9,10-dihydro-lO-methylacridine (163) or acriflavine (164) in aqueous acetonitrile containing sodium borohydride. A variety of alkyl halides, benzyl halides and chlorobenzenes were also reduced. The reaction proceeds by electron transfer from the excited state of the dihydroacridine to the chloroarene, chloride loss and hydrogen atom donation to the arene radical. Thus photoreduction of the arene is coupled with oxidation of the dihydroacridine to the acridinium salt the latter is reduced back to the dihydroacridine by the borohydride. [Pg.221]

Alkyl halide Benzylic halide Acyl halide... [Pg.523]

SO that was the required nucleophile (the enolate of acetic acid synthon is derived from diethyl malonate). The benzylic carbon must have been the electrophile this can be achieved as an alkyl halide (benzyl bromide). An FGl of the alkyl halide concludes the retrosynthesis by working back to the given starting material (toluene). [Pg.133]

Under the appropriate conditions, tertiary alkyl halides, benzylic halides, and allylic halides, that is, species capable of generating stable carbocations (Table 7.2), are found to undergo reactions that are generally classified as SnI. [Pg.481]

Thiourea, unlike urea, readily reacts in the tautomeric form (I) in the presence of suitable reagents, particularly alkyl halides thus benzyl chloride reacts with... [Pg.126]

Methyl iodide ethyl bromide ethyl iodide, higher alkyl halides, chloroform, iodoform, carbon tetrachloride, chlorobenzene, bromobenzene, iodobenzene, benzyl chloride (and nuclear substituted derivatives)... [Pg.390]

Formation of 2 naphthyl ethers. Alkyl halides and aryl-alkyl halides (e.g. benzyl chloride) are converted into 2-naphthyl ethers thus ... [Pg.391]

Alkylation of aldol type educts, e.g., /3-hydroxy esters, using LDA and alkyl halides leads stereoselectively to erythro substitution. The erythro threo ratio of the products is of the order of 95 5. Allylic and benzylic bromides can also be used. The allyl groups can later be ozonolysed to gjve aldehydes, and many interesting oligofunctional products with two adjacent chiral centres become available from chiral aldol type educts (G. Prater, 1984 D. Seebach, 1984 see also M. Nakatsuka, 1990, p. 5586). [Pg.27]

Benzylic halides that are secondary resemble secondary alkyl halides in that they undergo substitution only when the nucleophile is weakly basic If the nucleophile is a strong base such as sodium ethoxide elimination by the E2 mechanism is faster than substitution... [Pg.445]

Rearrangement is especially prevalent with primary alkyl halides of the type RCH2CH2X and R2CHCH2X Aluminum chloride induces ionization with rearrangement to give a more stable carbocation Benzylic halides and acyl halides do not rearrange... [Pg.511]

Secondary and tertiary alkyl halides are not suitable because they react with alkox ide bases by E2 elimination rather than by 8 2 substitution Whether the alkoxide base IS primary secondary or tertiary is much less important than the nature of the alkyl halide Thus benzyl isopropyl ether is prepared m high yield from benzyl chloride a pri mary chloride that is incapable of undergoing elimination and sodium isopropoxide... [Pg.672]

The alternative synthetic route using the sodium salt of benzyl alcohol and an isopropyl halide would be much less effective because of increased competition from elimination as the alkyl halide becomes more sterically hindered... [Pg.673]

N-Alkylations, especially of oxo-di- and tetra-hydro derivatives, e.g. (28)->(29), have been carried out readily using a variety of reagents such as (usual) alkyl halide/alkali, alkyl sulfate/alkali, alkyl halide, tosylate or sulfate/NaH, trialkyloxonium fluoroborate and other Meerwein-type reagents, alcohols/DCCI, diazoalkanes, alkyl carbonates, oxalates or malon-ates, oxosulfonium ylides, DMF dimethyl acetal, and triethyl orthoformate/AcjO. Also used have been alkyl halide/lithium diisopropylamide and in one case benzyl chloride on the thallium derivative. In neutral conditions 8-alkylation is observed and preparation of some 8-nucleosides has also been reported (78JOC828, 77JOC997, 72JOC3975, 72JOC3980). [Pg.206]

Pyrroles do not react with alkyl halides in a simple fashion polyalkylated products are obtained from reaction with methyl iodide at elevated temperatures and also from the more reactive allyl and benzyl halides under milder conditions in the presence of weak bases. Alkylation of pyrrole Grignard reagents gives mainly 2-alkylated pyrroles whereas N-alkylated pyrroles are obtained by alkylation of pyrrole alkali-metal salts in ionizing solvents. [Pg.53]

Methyl, ethyl, and benzyl ethers have been prepared in the presence of tetraethylammonium fluoride as a Lewis base (alkyl halide, DME, 20°, 3 h, 60-85% yields). ... [Pg.146]

Tnfluorometltylation of aryl, alkenyl, and alkyl halides can be accomplished by heating methyl fluorosulfonyldifluoroacetate and the appropriate halide precursor with copper(I) iodide at 60-80 °C in DMF [27 7] (equation 145). Similar trifluoromethylations of aryl, benzyl, and vinyl halides can be carried out with fluorosulfonyldifluoromethyl iodide and copper metal in DMF at 60-80 °C [2 75] (equation 146). [Pg.705]

However, it has recently been shown (42) that monomeric enamines such as 42 react normally to give the benzothiazoline salt (43) on alkylation with alkyl and benzyl halides. [Pg.124]

A fundamental problem in the alkylation of enamines, which is inherent in the bidentate system, is the competition between the desired carbon alkylation and attack at the nitrogen. With unactivated alkyl halides (3,267), this becomes especially serious with the enamines derived fromcycloheptan-one, cyclooctanone, cyclononanone, and enamines derived from aldehydes. Increasing amounts of carbon alkylation are found with the more reactive allyl and benzyl halides (268-273). However, with allyl halides one also observes increasing amounts of dialkylation of enamines. [Pg.352]

Nucleophilic (8 2) reactions for the formation of benzyl, allyl, and certain alkyl phosphates [e.g., Me4N (R0)2P(0)0 and an alkyl halide in refluxing... [Pg.665]

It was observed already by BougaulU that the reaction of 6-benzyl-3,5-dioxo-2,3,4,5-tetrahydro-l,2,4-triazines with alkyl halides in an alkaline solution yields a mixture of the 4-mono- and 2,4-dialkyl derivatives. This mixture of alkylation products can be readily sepa-... [Pg.210]

Alkylation at the ind-N of l,2,3,4-tetrahydro-j8-carbolines has been carried out with alkyl halide after treatment with sodamide in the usual manner. Cyanoethylation of a p /r-V-substituted tetrahydro-jS-carboline in the presence of Triton B yields the corresponding 9-cyanoethyl derivative. Similarly, treatment of p / -V-methyl-l,2,3,4,4a,9b-hexahydro-y-carboline with sodamide, followed by benzyl chloride, leads to the ind-A -benzyl-substituted derivatives. l-Oxo-l,2,3,4-tetrahydro-j8-carboline yields the ind-A -methyl derivative directly with dimethyl sulfate.Prolonged treatment with sodium hydride, followed by methyl iodide, yields the 2,9-dimethyl derivative. Heating with sodium hydride in acetone followed by the addition of dimethyl sulfate gives rise to the ind-V-methyl derivative. ... [Pg.162]

The reaction works well with primary alkyl halides, especially with allylic and benzylic halides, as well as other alkyl derivatives with good leaving groups. Secondary alkyl halides give poor yields. Tertiary alkyl halides react under the usual reaction conditions by elimination of HX only. Nitriles from tertiary alkyl halides can however be obtained by reaction with trimethylsilyl cyanide 4 ... [Pg.185]

With highly reactive alkyl halides, like allylic, benzylic or phenacyl halides, the ZjA-alkylation can be a serious side-reaction. Because of a SNl-like mechanism in those cases, the effect of enolate concentration on the reaction rate is low, and the resulting monoalkylester 5 may be more acidic than the unsubstituted starting material ... [Pg.191]

In general the Stork reaction gives moderate yields with simple alkyl halides better yields of alkylated product are obtained with more electrophilic reactants such like allylic, benzylic or propargylic halides or an a-halo ether, a-halo ester or a-halo ketone. An example is the reaction of 1-pyrrolidino-l-cyclohexene 6 with allyl bromide, followed by aqueous acidic workup, to yield 2-allylcyclohexanone ... [Pg.268]

This reaction, which is named after W. Williamson, is the most important method for the synthesis of unsymmetrical ethers 3. For this purpose an alkoxide or phenoxide 1 is reacted with an alkyl halide 2 (with R = alkyl, allyl or benzyl). Symmetrical ethers can of course also be prepared by this route, but are accessible by other routes as well. [Pg.291]

With secondary and tertiary alkyl halides an Ea-elimination is often observed as a side-reaction. As the alkyl halide reactant an iodide is most often employed, since alkyl iodides are more reactive than the corresponding bromides or chlorides. With phenoxides as nucleophiles a C-alkylation can take place as a competing reaction. The ratio of 0-alkylation versus C-alkylation strongly depends on the solvent used. For example reaction of benzylbromide 4 with /3-naphth-oxide 5 in yV,A-dimethylformamide (DMF) as solvent yields almost exclusively the /3-naphthyl benzylether 6, while the reaction in water as solvent leads via intermediate 7 to formation of the C-benzylated product—l-benzyl-2-naphthol 8—as the major product ... [Pg.292]

The synthesis of halodeoxy sugars has also been achieved by reaction of sugar phosphorodiamido and phosphonamido derivatives with alkyl halides (83). Heating equimolar amounts of 6-(tetraethylphosphoro-diamido)-l,2 3,4-di-0 isopropylidene-D-galactose with methyl iodide (and benzyl bromide) at 140°C. for 4 hours afforded the 6-deoxy-6-iodo (74b) (75%) and 6-bromo-6-deoxy (74c) (56%) derivatives, respectively. [Pg.186]

Because of resonance stabilization, a primary allylic or benzylic carbocation is about as stable as a secondary alkyl carbocation and a secondary allylic or benzylic carbocation is about as stable as a tertiary alkyl carbocation. This stability order of carbocations is the same as the order of S l reactivity for alkyl halides and tosylates. [Pg.377]


See other pages where Alkyl halides benzylic is mentioned: [Pg.15]    [Pg.294]    [Pg.95]    [Pg.15]    [Pg.745]    [Pg.37]    [Pg.15]    [Pg.294]    [Pg.95]    [Pg.15]    [Pg.745]    [Pg.37]    [Pg.74]    [Pg.200]    [Pg.434]    [Pg.580]    [Pg.116]   
See also in sourсe #XX -- [ Pg.86 , Pg.155 , Pg.218 ]




SEARCH



Alkyls benzyls

Benzyl halides

Benzylic halides, alkylation

Benzylic halides, alkylation

Benzylic halides, alkylation conversion

Benzylic halides, alkylation coupling

Benzylic halides, alkylation oxidation

Benzylic halides, as alkylating agents

Benzylic reaction with alkyl halides

Benzyllic halides

Carbocations, benzylic alkyl halides

Carbon-metal bonds aryl, alkyl, and benzyl halides

Nucleophilic alkyl substitution benzylic halides

© 2024 chempedia.info