Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl halides asymmetric syntheses

A simple two-step synthesis of 5H-alkyl-2-phenyloxazol-4-ones has been reported by Trost and coworkers (Scheme 6.209) [377]. a-Bromo acid halides were condensed with benzamide in the presence of pyridine base at 60 °C to form the corresponding imides. Microwave irradiation of the imide intermediates in N,N-dimethylacetamide (DMA) containing sodium fluoride at 180 °C for 10 min provided the desired 5H-alkyl-2-phenyloxazol-4-ones (oxalactims) in yields of 44—82%. This class of heterocycles served as excellent precursors for the asymmetric synthesis of a-hydroxycar-boxylic acid derivatives [377]. [Pg.240]

The Williamson ether synthesis is a general method for producing both symmetric and asymmetric (R R ) ethers. This is an S,j2 process following the general procedure in Figure 3-30. The process involves the reaction of an alk-oxide ion with an alkyl halide. [Pg.47]

Synthetic applications as well as mechanistic considerations were reviewed recently24. Extension of the methodology to the seven-membered ring resulted in the first asymmetric synthesis of chiral benzazepines by alkylation with primary alkyl halides (92-96% ee) in 57-82% yield25. [Pg.669]

The phase-transfer-catalyzed asymmetric alkylation of 1 has usually been performed with achiral alkyl halides, and hence the stereochemistry of the reaction with chiral electrophiles has scarcely been addressed. Nevertheless, several groups have tackled this problem. Zhu and coworkers examined the alkylation of 1 with stereo-chemically defined (5S)-N-benzyloxycarbonyl-5-iodomethyl oxazolidine using 4d to prepare (2S,4R)-4-hydroxyornithine for the total synthesis of Biphenomycin. Unexpectedly, however, product 7 with a 2 R absolute configuration was formed as a major isomer, and the diastereomeric ratio was not affected by switching the catalyst to pseudoenantiomeric 2d and even to achiral tetrabutylammonium bromide (TBAB), indicating that the asymmetric induction was dictated by the substrate (Scheme 2.3) [21]. [Pg.11]

In particular, it is not only the cinchona alkaloids that are suitable chiral sources for asymmetric organocatalysis [6], but also the corresponding ammonium salts. Indeed, the latter are particularly useful for chiral PTCs because (1) both pseudo enantiomers of the starting amines are inexpensive and available commercially (2) various quaternary ammonium salts can be easily prepared by the use of alkyl halides in a single step and (3) the olefin and hydroxyl functions are beneficial for further modification of the catalyst. In this chapter, the details of recent progress on asymmetric phase-transfer catalysis are described, with special focus on cinchona-derived ammonium salts, except for asymmetric alkylation in a-amino acid synthesis. [Pg.35]

Cinchona alkaloids, of course, have occupied the central position in the design of chiral PTCs. By employing a simple chemical transformation of the tertiary amine ofthe natural cinchona alkaloids to the corresponding quaternary ammonium salts, using active halides (e.g., aryl-methyl halides), a basic series of PTCs can be readily prepared. Cinchona alkaloid-derived PTCs have proved their real value in many types of catalytic asymmetric synthesis, including a-alkylation of modified a-amino acids for the synthesis of higher-ordered a-amino acids [2], a-alkylation of... [Pg.49]

The facile asymmetric synthesis of a-amino acids usually inaccessible by enzymatic processes becomes feasible by employing appropriate electrophiles such as ortho-disubstituted benzyl bromides. In the reaction with simple alkyl halides such as ethyl iodide, the use of aqueous cesium hydroxide (CsOH) as a basic phase at a lower reaction temperature is generally recommended [7e]. [Pg.74]

Because of its efficiency and broad substrate tolerance with regard to the alkyl halide, organocatalytic asymmetric alkylation has been applied to the synthesis of several unusual amino acids. These non-natural amino acids are often key intermediates in the synthesis of biologically active peptides and other compounds of pharmaceutical importance. [Pg.25]

Camphor and camphor-derived analogues are used frequently as chiral auxiliaries in asymmetric synthesis (cf Chapter 23). There have been numerous reports in the use of camphor imine as templates to direct enantioselective alkylation for the synthesis of a-amino acids, a-amino phos-phonic acids, a-substituted benzylamines, and a-amino alcohols (e.g., Scheme 5.9).43 47 Enantiomeric excesses of the products range from poor to excellent depending on the type of alkyl halides used. [Pg.66]

On the other hand, lithium enolates derived from substituted endocyclic ketones have largely been exploited in the synthesis of steroids since the regioselectivity of their deprotonation can be controlled and high levels of 1,2- and 1,3-stereoselection occur9,418. The control is steric rather than electronic, with the attack directed to the less substituted ji-face of the enolate for conformationally rigid cyclopentanones, whereas stereoelectronic control becomes significant for the more flexible cyclohexanones. Finally, an asymmetric variant of the formation of a-branched ketones by hydration of camphor-derived alkynes followed by sequential alkylation with reactive alkyl halides of the resulting ketones was recently reported (Scheme 87)419. [Pg.590]

Asymmetric Synthesis of a-Amino Acids. Chiral ketimines prepared from the title ketone and glycinates can be deprotonated and treated with electrophiles, such as alkyl halides (eq 1), or Michael acceptors, to give a-subsdtuted a-amino acids with moderate to excellent levels of diastereoselectivity. [Pg.362]

Alcohols can be obtained from many other classes of compounds such as alkyl halides, amines, al-kenes, epoxides and carbonyl compounds. The addition of nucleophiles to carbonyl compounds is a versatile and convenient methc for the the preparation of alcohols. Regioselective oxirane ring opening of epoxides by nucleophiles is another important route for the synthesis of alcohols. However, stereospe-cific oxirane ring formation is prerequisite to the use of epoxides in organic synthesis. The chemistry of epoxides has been extensively studied in this decade and the development of the diastereoselective oxidations of alkenic alcohols makes epoxy alcohols with definite configurations readily available. Recently developed asymmetric epoxidation of prochiral allylic alcohols allows the enantioselective synthesis of 2,3-epoxy alcohols. [Pg.2]

In the laboratory of T.F. Jamison, the synthesis of amphidinolide T1 was accomplished utilizing a catalytic and stereoselective macrocyclization as the key step. ° The Myers asymmetric alkylation was chosen to establish the correct stereochemistry at the C2 position. In the procedure, the alkyl halide was used as the limiting reagent and almost two equivalents of the lithium enolate of the A/-propionyl pseudoephedrine chiral auxiliary was used. The alkylated product was purified by column chromatography and then subjected to basic hydrolysis to remove the chiral auxiliary. [Pg.301]

In the laboratory of T.-J. Lu, a highly stereoselective method for the asymmetric synthesis of a-amino acids was developed by the alkylation of a chiral tricyclic iminolactone derived from (+)-camphor. The iminolactone can be considered a glycine equivalent. The synthesis commenced with the Riley oxidation of (+)-camphor to obtain the corresponding (+)-camphorquinone. Amino acids are obtained by first alkylating the a-position of the lactone with various alkyl halides and then hydrolyzing the monosubstituted products. The advantage of this technique was that the chiral auxiliary could be fully recovered without the loss of any optical activity. [Pg.381]

Recently, Ni and group [66] introduced a new type of chiral ionic liquid based on pyridinium cation having a chiral moiety tethered to a urea unit. The synthesis of salt involves a reaction of 2-aminomethyl pyridine with chiral 2-isocyanate-3-methylbutyrate and then heating in the presence of alkyl halide to form salt (Scheme 17.18). In total, nine chiral pyridinium salts were synthesized with varying amino acids. Currently, the authors are using these salts for asymmetric induction in organic transformation. [Pg.486]

We pointed out in chapter 27 that Schultz s asymmetric Birch reduction can be developed with iodolactonisation to remove the chiral auxiliary and set up new chiral centres. Now we shall see how he applied that method to alkaloid synthesis.1 The first reaction is the same as in chapter 27 but the alkyl halide is now specified this gave diastereomerically pure acetate in 96% yield and hydrolysis gave the alcohol 4. Mitsunobu conversion of OH to azide and enol ether hydrolysis gave 5, the substrate for the iodolactonisation. Iodolactonisation not only introduces two new chiral centres but cleaves the chiral auxiliary, as described in chapter 27. Reduction of the azide 6 to the amine with Ph3P leads to the imine 7 by spontaneous ring closure. [Pg.682]


See other pages where Alkyl halides asymmetric syntheses is mentioned: [Pg.35]    [Pg.324]    [Pg.92]    [Pg.45]    [Pg.389]    [Pg.977]    [Pg.178]    [Pg.653]    [Pg.737]    [Pg.16]    [Pg.77]    [Pg.61]    [Pg.328]    [Pg.384]    [Pg.212]    [Pg.86]    [Pg.147]    [Pg.174]    [Pg.597]    [Pg.173]    [Pg.3531]    [Pg.977]    [Pg.362]    [Pg.17]    [Pg.594]    [Pg.212]    [Pg.301]    [Pg.444]    [Pg.486]   
See also in sourсe #XX -- [ Pg.3 , Pg.53 ]

See also in sourсe #XX -- [ Pg.3 , Pg.53 ]




SEARCH



Alkyl halides synthesis

Alkyl synthesis

Alkylations, asymmetric

Halides synthesis

Synthesis alkylation

© 2024 chempedia.info