Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl chain, extension

Extensive discussions have focused on the conformation of the alkyl chains in the interior ". It has been has demonstrated that the alkyl chains of micellised surfactant are not fully extended. Starting from the headgroup, the first two or three carbon-carbon bonds are usually trans, whereas gauche conformations are likely to be encountered near the centre of tlie chain ". As a result, the methyl termini of the surfactant molecules can be located near the surface of the micelle, and have even been suggested to be able to protrude into the aqueous phase "". They are definitely not all gathered in the centre of tire micelle as is often suggested in pictorial representations. NMR studies have indicated that the hydrocarbon chains in a micelle are highly mobile, comparable to the mobility of a liquid alkane ... [Pg.127]

The main industrial use of alkyl peroxyesters is in the initiation of free-radical chain reactions, primarily for vinyl monomer polymerizations. Decomposition of unsymmetrical diperoxyesters, in which the two peroxyester functions decompose at different rates, results in the formation of polymers of enhanced molecular weights, presumably due to chain extension by sequential initiation (204). [Pg.131]

In recent years there has been some substitution of TDI by MDI derivatives. One-shot polyether processes became feasible with the advent of sufficiently powerful catalysts. For many years tertiary amines had been used with both polyesters and the newer polyethers. Examples included alkyl morpholines and triethylamine. Catalysts such as triethylenediamine ( Dabco ) and 4-dimethyla-minopyridine were rather more powerful but not satisfactory on their own. In the late 1950s organo-tin catalysts such as dibutyl tin dilaurate and stannous octoate were found to be powerful catalysts for the chain extension reactions. It was found that by use of varying combinations of a tin catayst with a tertiary amine... [Pg.796]

Chain extension by means of the reaction of alkyl halides with cyanide is frequently alluded to but rarely employed, mainly because of the long reaction times and poor yields usually encountered. The use of DMSO as a solvent has greatly simplified the procedures and improved the yields of many ionic reactions, and the conversion of alkyl chlorides to nitriles is a good example. [Pg.140]

Free radical additions to mono-olefins are quite common and can frequently be employed to advantage on a synthetic scale. Formamide, for example, on exposure to sunlight or UV radiation adds to olefins in an anti-Markovnikov sense giving 1 1 adducts that are readily isolated and crystallized. Moreover, since alkyl formamides may be conveniently converted to carboxylic acids by conventional means, the reaction represents a general method of chain extension. [Pg.141]

The subsequent chain extension can be accomplished by the pedestrian step-by-step homologation sequence via the acyclic diyne 12 or by a more efficient block-to-block strategy. The step-by-step approach includes protiodesilylation of diyne 12 followed by coupling with the propargyl chloride 9 following the same protocol as for the preparation of 12 from 11 and subsequent repetitions of protiodesilylation and alkylation with chloride 9 to reach stages 16 and 18, respectively (Scheme 3). [Pg.3]

The main classes of plasticizers for polymeric ISEs are defined by now and comprise lipophilic esters and ethers [90], The regular plasticizer content in polymeric membranes is up to 66% and its influence on the membrane properties cannot be neglected. Compatibility with the membrane polymer is an obvious prerequisite, but other plasticizer parameters must be taken into account, with polarity and lipophilicity as the most important ones. The nature of the plasticizer influences sensor selectivity and detection limits, but often the reasons are not straightforward. The specific solvation of ions by the plasticizer may influence the apparent ion-ionophore complex formation constants, as these may vary in different matrices. Ion-pair formation constants also depend on the solvent polarity, but in polymeric membranes such correlations are rather qualitative. Insufficient plasticizer lipophilicity may cause its leaching, which is especially undesired for in-vivo measurements, for microelectrodes and sensors working under flow conditions. Extension of plasticizer alkyl chains in order to enhance lipophilicity is only a partial problem solution, as it may lead to membrane component incompatibility. The concept of plasticizer-free membranes with active compounds, covalently attached to the polymer, has been intensively studied in recent years [91]. [Pg.124]

Reverse-phase HPLC (RP-HPLC) separates proteins on the basis of differences in their surface hydophobicity. The stationary phase in the HPLC column normally consists of silica or a polymeric support to which hydrophobic arms (usually alkyl chains, such as butyl, octyl or octadecyl groups) have been attached. Reverse-phase systems have proven themselves to be a particularly powerful analytical technique, capable of separating very similar molecules displaying only minor differences in hydrophobicity. In some instances a single amino acid substitution or the removal of a single amino acid from the end of a polypeptide chain can be detected by RP-HPLC. In most instances, modifications such as deamidation will also cause peak shifts. Such systems, therefore, may be used to detect impurities, be they related or unrelated to the protein product. RP-HPLC finds extensive application in, for example, the analysis of insulin preparations. Modified forms, or insulin polymers, are easily distinguishable from native insulin on reverse-phase columns. [Pg.184]

Aliphatic AEOs, considered as environmentally safe surfactants, are the most extensively used non-ionic surfactants. The commercial mixtures consist of homologues with an even number of carbon atoms ranging typically from 12 to 18 or of a mixture of even-odd linear and a-substituted alkyl chains with 11—15 carbons. Furthermore, each homologue shows an ethoxymer distribution accounting typically for 1—30 ethoxy units with an average ethoxylation number in the range 5—15. The separation of the AEO complex mixtures was achieved by reversed-phase and normal-phase chromatographic systems [74—76]. [Pg.132]

The dynamical features observed for methanol and ethanol invite an extension to longer alkyl chains, to see whether any new aspects related to the increased conformational freedom come into play. The O—H group is a sensitive probe for at least the nearest-neighbor torsional states [230]. This is already true at room temperature and even more so in supersonic jets [65, 69, 157],... [Pg.31]

The hydrogen bonds in aliphatic alcohol clusters can be modified in a systematic, yet subtle, way by replacing hydrogen atoms of the alkyl group by fluorine atoms [248, 249]. This leads to only modest changes in spatial extension, but it introduces polarity into the hydrophobic alkyl chains. Despite their polarity, the fluorine atoms are not considered to be attractive hydrogen bond acceptors [250]. Huorinated alkanes have quite remarkable properties that can be related to this combination of polarity and weak hydrogen bond propensity. Alcohols with... [Pg.34]


See other pages where Alkyl chain, extension is mentioned: [Pg.2156]    [Pg.497]    [Pg.230]    [Pg.2156]    [Pg.497]    [Pg.230]    [Pg.62]    [Pg.99]    [Pg.22]    [Pg.137]    [Pg.211]    [Pg.16]    [Pg.33]    [Pg.293]    [Pg.60]    [Pg.358]    [Pg.226]    [Pg.227]    [Pg.146]    [Pg.266]    [Pg.56]    [Pg.56]    [Pg.187]    [Pg.226]    [Pg.53]    [Pg.334]    [Pg.184]    [Pg.271]    [Pg.293]    [Pg.70]    [Pg.586]    [Pg.595]    [Pg.636]    [Pg.390]    [Pg.397]    [Pg.219]    [Pg.221]    [Pg.222]    [Pg.5]    [Pg.18]    [Pg.251]    [Pg.273]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Chain extensibility

Chain extension

© 2024 chempedia.info