Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium tetroxide reaction with alkenes

Where functional groups are present which are more readily oxidized than the ether group, multiple reactions can occur. For example, in their total synthesis of (-i-)-tutin and (-i-)-asteromurin A, Yamada et al. observed concomitant oxidation of a secondary alcohol function in the oxidation of the ether (30) with ruthenium tetroxide (equation 24). The same group successfully achieved the simultaneous oxidation of both ether functions of the intermediate (31) in their related stereocontrolled syntheses of (-)-picrotox-inin and (-i-)-coriomyrtin (equation 25). Treatment of karahana ether (32) with excess ruthenium tetroxide resulted in the formation of the ketonic lactone (33) via oxidation of both the methylene group adjacent to the ether function and the exocyclic alkenic group (equation 26). In contrast, ruthenium tetroxide oxidation of the steroidal tetral drofuran (34) gave as a major product the lactone (35) in which the alkenic bond had been epoxidized. A small amount of the 5,6-deoxylactone (17%) was also isolated (equation 27). This transformation formed the basis of a facile introduction of the ecdysone side chain into C-20 keto steroids. [Pg.243]

Sodium periodate (sodium metaperiodate), NaI04 (mp 300 °C dec), which is commercially available, is applied mainly in aqueous or aqueous-alcoholic solutions. Like the free periodic acid, sodium periodate cleaves vicinal diols to carbonyl compounds [762], This reaction is especially useful in connection with potassium permanganate [763, 764] or osmium tetroxide [765], Such mixed oxidants oxidize alkenes to carbonyl compounds or carboxylic acids, evidently by way of vicinal diols as intermediates. Sulfides are transformed by sodium periodate into sulfoxides [322, 323, 766, 767, 768, 769, 770, 771, 772], and selenides are converted into selenoxides [773]. Sodium periodate is also a reoxidant of lower valency ruthenium in oxidations with ruthenium tetroxide [567, 774],... [Pg.30]

Osmium tetroxide used in combination with sodium periodate can also effect alkene cleavage.191 Successful oxidative cleavage of double bonds using ruthenium tetroxide and sodium periodate has also been reported.192 In these procedures the osmium or ruthenium can be used in substoichiometric amounts because the periodate reoxidizes the metal to the tetroxide state. Entries 1 to 4 in Scheme 12.18 are examples of these procedures. Entries 5 and 6 show reactions carried out in the course of multistep syntheses. The reaction in Entry 5 followed a 5-exo radical cyclization and served to excise an extraneous carbon. The reaction in Entry 6 followed introduction of the allyl group by enolate alkylation. The aldehyde group in the product was used to introduce an amino group by reductive alkylation (see Section 5.3.1.2). [Pg.1127]

Ruthenium tetroxide is a four-electron oxidant which directly transforms alkenic compounds into oxidative cleavage products, i.e. carbonyl compounds and carboxylic acids.288 The reaction can be visualized as proceeding according to a [4 + 2] cycloaddition of the cis-dioxo moiety with the alkene, resulting in the formation of a RuVI cyclic diester which decomposes to ruthenium(IV) dioxide and oxidative cleavage products (equation 114).288 This reaction can be made catalytic... [Pg.357]

Trithioles and 1,3,2-dioxathiolanes. 1,2,3-Trithiolanes are prepared by reaction of alkenes with elemental sulfur . The synthesis of 1,3,2-dioxathiolane -oxides (cyclic sulfites) and 1,3,2-dioxathiolane S, -dioxides (cyclic sulfates) is discussed in comprehensive reviews <1997AHC(68)89, 2000T7051>. The most widely used method for the preparation of 1,3,2-dioxathiolane A-oxides 557 is the reaction of the corresponding 1,2-diols 556 with thionyl chloride in the presence of pyridine or triethylamine (Scheme 251). More reactive 1,3,2-dioxathiolane S,A-dioxides 558 are usually obtained by oxidation of sulfites 557 with sodium periodate, which is mediated by ruthenium tetroxide generated in situ from a catalytic amount of ruthenium trichloride <1997AHC89, 2000T7051, CHEC-III(6.05.10.3)183>. [Pg.773]


See other pages where Ruthenium tetroxide reaction with alkenes is mentioned: [Pg.243]    [Pg.265]    [Pg.357]    [Pg.243]    [Pg.1526]    [Pg.577]    [Pg.215]    [Pg.135]    [Pg.236]    [Pg.710]    [Pg.192]    [Pg.191]    [Pg.236]    [Pg.710]    [Pg.372]    [Pg.556]    [Pg.556]    [Pg.241]    [Pg.118]   
See also in sourсe #XX -- [ Pg.265 ]




SEARCH



Alkenes ruthenium tetroxide

Reaction with alkenes

Ruthenium alkenes

Ruthenium reaction with

Ruthenium reactions

Ruthenium tetroxide

Tetroxides

© 2024 chempedia.info