Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes dioxide

The above simple process cannot be applied to the preparation of the homo-logues a higher temperature is requir (di-n-amyl ether, for example, boils at 169°) and, under these conditions, alkene formation predominates, leading ultimately to carbonisation and the production of sulphur dioxide. If, however, the water is largely removed by means of a special device (see Fig. Ill, 57,1) as soon as it is formed, good 300 of ethers may be obtained from primary alcohols, for example ... [Pg.309]

Ozone ALkenes, aromatic compounds, bromine, diethyl ether, ethylene, HBr, HI, nitric oxide, nitrogen dioxide, rubber, stibine... [Pg.1210]

Pyrazine 1,4-dioxides are available by the direct self-condensation of 1,2-hydroxyaminooximes (70JOC2790). 1,2-Nitrooximes are obtained by the isomerization of alkene initrogen trioxide adducts, which are reduced with palladium on charcoal to the hydroxyaminooximes which undergo acid-catalyzed auto-condensation to the pyrazine 1,4-dioxides (Scheme 19). [Pg.170]

N- Aminoaziridines have been converted to alkenes by reaction with a variety of oxidizing agents (70JA1784). Usually, the deamination reaction is stereospecific. The oxidation of l-amino-2,3-diphenylaziridines with manganese dioxide, however, was not stereospecific. The trans compound gives entirely frans-stilbene, whereas the cfs-aziridine forms a mixture of 85% trans- and 15% c -aikene. cw-Stilbene is not isomerized to trans under the reaction conditions, and the results are explained in terms of an azamine intermediate which can isomerize through a tautomeric equilibrium. [Pg.74]

Thiirane 1,1-dioxides extrude sulfur dioxide readily (70S393) at temperatures usually in the range 50-100 °C, although some, such as c/s-2,3-diphenylthiirane 1,1-dioxide or 2-p-nitrophenylthiirane 1,1-dioxide, lose sulfur dioxide at room temperature. The extrusion is usually stereospeciflc (Scheme 10) and a concerted, non-linear chelotropic expulsion of sulfur dioxide or a singlet diradical mechanism in which loss of sulfur dioxide occurs faster than bond rotation may be involved. The latter mechanism is likely for episulfones with substituents which can stabilize the intermediate diradical. The Ramberg-Backlund reaction (B-77MI50600) in which a-halosulfones are converted to alkenes in the presence of base, involves formation of an episulfone from which sulfur dioxide is removed either thermally or by base (Scheme 11). A similar conversion of a,a -dihalosulfones to alkenes is effected by triphenylphosphine. Thermolysis of a-thiolactone (5) results in loss of carbon monoxide rather than sulfur (Scheme 12). [Pg.141]

A substantial portion of fhe gas and vapors emitted to the atmosphere in appreciable quantity from anthropogenic sources tends to be relatively simple in chemical structure carbon dioxide, carbon monoxide, sulfur dioxide, and nitric oxide from combustion processes hydrogen sulfide, ammonia, hydrogen chloride, and hydrogen fluoride from industrial processes. The solvents and gasoline fractions that evaporate are alkanes, alkenes, and aromatics with relatively simple structures. In addition, more complex... [Pg.44]

Simultaneous elimination of chloride ion and carbon dioxide occurs dunng heating of methyl chlorodifluoroacetate with lithium chloride in hexamethyl-phosphoric tnamide (HMPA) The difluorocarbene generated in this way is trapped by electron-rich alkenes to form 1,1-difluorocyclopropanes [26] (equation 24)... [Pg.894]

Similarly, a series of thial 5-oxides 83 dimerized upon standing to give 1,2-dithietane 1,1-dioxides 84, which were reduced to the corresponding alkenes on treatment with LiAlFLt (93SL839 96BSF515). [Pg.241]

Treatment of an a-halosulfone 1 with base leads to extrusion of sulfur dioxide and formation of an alkene 2. This reaction is referred to as the Ramberg-Bdcklund reaction it usually yields a mixture of E- and Z-isomers of the alkene. [Pg.235]

An a-halosulfone 1 reacts with a base by deprotonation at the a -position to give a carbanionic species 3. An intramolecular nucleophilic substitution reaction, with the halogen substituent taking the part of the leaving group, then leads to formation of an intermediate episulfone 4 and the halide anion. This mechanism is supported by the fact that the episulfone 4 could be isolated. Subsequent extrusion of sulfur dioxide from 4 yields the alkene 2 ... [Pg.235]

In 1970, it was disclosed that it is possible to achieve the conversion of dimethylformamide cyclic acetals, prepared in one step from vicinal diols, into alkenes through thermolysis in the presence of acetic anhydride." In the context of 31, this two-step process performs admirably and furnishes the desired trans alkene 33 in an overall yield of 40 % from 29. In the event, when diol 31 is heated in the presence of V, V-dimethylforrnamide dimethyl acetal, cyclic dimethylformamide acetal 32 forms. When this substance is heated further in the presence of acetic anhydride, an elimination reaction takes place to give trans olefin 33. Although the mechanism for the elimination step was not established, it was demonstrated in the original report that acetic acid, yV, V-dimethylacetamide, and carbon dioxide are produced in addition to the alkene product."... [Pg.146]

Other interesting three-component cycloadditions are the following Sulfur dioxide and diazo compounds lead to episulfones (equation 75)436—in a special case to 4,5-dihydrothiepine S,S-dioxides437 sulfur dioxide, ketene, and arylimine lead to thiazole derivatives438 (equation 76) sulfur dioxide, quinone, and alkenes lead to benzoxathiane derivatives439 (equation 77). [Pg.214]

Thus, most thiirane dioxides slowly decompose near room temperature and rapidly at about 80° or above their melting points to give, stereospecifically, the related alkenes and sulfur dioxide2,18,19,71 (equation 5). [Pg.399]

The formation of alkenes from thiirane dioxides may not be stereospecifically controlled in the presence of a sufficiently strong base and sufficiently acidic protons in the three-membered ring. Under such conditions (essentially those typical for the Ramberg Backlund reaction), epimerization via a carbanion intermediate produces an equilibrium mixture of thiirane dioxides19,99 and consequently a mixture of cis- and trans-alkenes. [Pg.399]

The elimination of sulfur dioxide from thiirane dioxides leading to the corresponding alkenes is not the only result of base-induced reactions other products are also formed. This fact raises the question of the mechanistic pathway of this reaction. In general, the thiirane dioxide is treated with a large excess of the base in an appropriate solvent for several hours at room temperature or below. Bases commonly used are 2n NaOH (in water), NaOCH3 (in methanol), t-BuO-K + (in f-BuOH) and BuLi (in tetrahydrofuran) or KOH-CCU (in t-BuOH)16-19"112 113. [Pg.405]

A nucleophilic attack of the hydroxide (or the alkoxide) ions on the sulfur atom of the thiirane dioxide ring to give sulfonic acids or similar intermediates, which then decompose to alkenes and bisulfite ion, has been suggested for these reactions16-17>". [Pg.405]

Similarly, the reaction of the parent thiirane dioxide, the 2-chloro- and 2,3-cis-dimethylthiirane dioxides with either Grignard or alkyl lithium reagents, has been studied extensively. The fair-to-good yields of the sulfinates (62) obtained (48-82%), accompanied by ethylene (or the corresponding alkenes for substituted thiirane dioxide), have been interpreted in terms of initial nucleophilic attack of the base on the sulfur atom as depicted in equation 17116. [Pg.405]

Similarly, the stereospecific formation of cis-2-butene from cis-2,3-dimethylthiirane dioxide19 may be rationalized in terms of a stereospecific ring opening to give the threo-sulfinate 120 which, in turn, decomposes stereospecifically to yield the cis-alkene, hydroxide ion and sulfur dioxide73. The parent thiirane dioxide fragments analogously to ethylene, hydroxide ion and sulfur dioxide (equation 49). [Pg.420]

It was further confirmed that although the fragmentation pattern is dependent on the substitution pattern, most thiirane dioxides formed in situ decompose rapidly and stereospecifically under alkaline conditions to yield the corresponding alkenes with retention of configuration156. [Pg.420]

There is no clear reason to prefer either of these mechanisms, since stereochemical and kinetic data are lacking. Solvent effects also give no suggestion about the problem. It is possible that the carbon-carbon bond is weakened by an increasing number of phenyl substituents, resulting in more carbon-carbon bond cleavage products, as is indeed found experimentally. All these reductive reactions of thiirane dioxides with metal hydrides are accompanied by the formation of the corresponding alkenes via the usual elimination of sulfur dioxide. [Pg.421]

A similar mechanism may also be suggested for the thermal fragmentation of cyclic five-membered a-sulfonyl ethers to sulfur dioxide, alkenes and carbonyl compounds (equation 33)101 103 as well as for the analogous rearrangement and fragmentation of trithioorthoacetate-S, S-dioxides (equation 34)104. [Pg.680]

In a combustion analysis, 3.21 g of a hydrocarbon formed 4.48 g of water and 9.72 g of carbon dioxide. Deduce its empirical formula and state whether it is likely to be an alkane, an alkene, or an alkyne. Explain your reasoning. [Pg.869]


See other pages where Alkenes dioxide is mentioned: [Pg.21]    [Pg.406]    [Pg.308]    [Pg.95]    [Pg.85]    [Pg.286]    [Pg.164]    [Pg.169]    [Pg.132]    [Pg.155]    [Pg.180]    [Pg.561]    [Pg.1254]    [Pg.15]    [Pg.68]    [Pg.146]    [Pg.173]    [Pg.173]    [Pg.198]    [Pg.409]    [Pg.420]    [Pg.422]    [Pg.688]    [Pg.691]    [Pg.881]    [Pg.884]    [Pg.947]    [Pg.1209]   
See also in sourсe #XX -- [ Pg.301 , Pg.308 ]




SEARCH



Alcohols from alkenes by selenium dioxide oxidation

Alkenes nitrogen dioxide

Alkenes nitrogen dioxide reaction

Alkenes reactions with carbon dioxide

Alkenes reactions with chlorine dioxide

Alkenes selenium dioxide

Alkenes, allylic reaction with selenium dioxide

Carbon dioxide alkenes/alkynes with

Nitrogen dioxide reactions with alkenes

Ruthenium dioxide oxidative cleavage of alkenes

Ruthenium dioxide periodate cleavage of alkenes

Selenium dioxide oxidation alkenes

Sulfur dioxide-co-alkenes

© 2024 chempedia.info