Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolymerization, alkenes

Copolymerization to form polyketones proceeds by the carbonylation of some alkenes in the absence of nucleophiles. Copolymerization of CO and norbornadiene takes place to give the polyketone 28(28]. Reaction of ethylene and other alkenes with CO affords the polyketones 29. The use of cationic Pd catalysts and bipyridyl or 1,10-phenanthroline is important for the polymerization [29-31]. [Pg.516]

Nickel(II) complexes of ligands 38 (R=H,Me R =H,Me,Et,Tr,CH30 R =H, CH3O R =H, F, CH3O) are highly active catalysts for ethylene polymerization [86,159], whereas palladium(II) complexes possess catalytic properties in the copolymerization of CO and alkenes [160] (Scheme 36). [Pg.96]

The OEt-substituted Zr(IV)-boratabenzene complex has been employed in an interesting dual-catalyst approach to the synthesis of branched polyethylene.47 Capitalizing on the ability of this boratabenzene complex to generate 1-alkenes (Scheme 25) and the ability of the titanium complex illustrated in Scheme 27 to copolymerize ethylene and 1-alkenes, with a two-catalyst system one can produce branched polyethlene using ethylene as the only monomer (Scheme 27). The structure and properties of the branched polyethylene can be altered by adjusting the reaction conditions. [Pg.115]

PALLADIUM-CATALYZED ALTERNATING COPOLYMERIZATION OF ALKENES AND CARBON MONOXIDE... [Pg.179]

Drent, E. van Broekhoven, J. A. M. Doyle, M. J. Wong, P. K. Palladium Catalyzed Copolymerization of Carbon Monoxide with Alkenes to Alternating Polyketones and Polyspiroketals. Fink, G. Muelhaupt, R. Brintzinger, H. H. Eds. Ziegler Catal. Springer, Berlin, 1995, pp 481 496. [Pg.202]

The synthesis and properties of heat-resistant polyazomethines containing 2,5-disubstituted oxadiazole fragments, being insulators convertible into semiconductors by doping with iodine, have been described. The radical copolymerization of alkenes with the fluorescent co-monomer 2-/-butyl-5-(4 -vinyl-4-biphenylyl)-l,3,4-oxadiazole has resulted in useful macromolecular scintillators. Anionic polymerization of 2-phenyl-l,3,4-oxadiazolin-5-one has produced a nylon-type product <1996CHEC-II(4)268>. [Pg.452]

Ziegler-Natta polymerization leads to linear unbranched polyethylene, the so-called high density polyethylene (HDPE), which is denser, tougher and more crystalline. By copolymerization with other alkenes it is possible to obtain linear low density polyethylene (LEDPE) with better mechanical properties than LDPE. Blends of LLDPE and LDPE are used to combine the good final mechanical properties of LLDPE and the strength of LDPE in the molten state. [Pg.218]

Carbohydrates remain an attractive source of chirality in preparation of ligands for asymmetric catalysis. Functionalized phospholanes, 192 [167], and chiral bisphosphinites 193 [168] with an attached crown ether unit were obtained recently from D-mannitol and from phenyl 2,3-di-0-allyl-4,6-0-benzylidene-p-D-glucopyranoside, respectively (Figure 18). Compounds 194 and 195 were obtained in the photochemical addition of H2P(CH2)3PPH2 onto the crresponding alkenes - Pd-complexes of these new bisphosphines were successfully applied as catalysts in the copolymerization of CO and... [Pg.44]

Along with homopolymerization, copolymerization has also been studied within the framework of initiation by tris(4-bromophenyl)ammoniumyl hexachloroantimonate (Bauld et al. 1998a). Generally, cation-radical cycloaddition occurs more efficiently when the reactive cation-radical is the ionized dienophile (Bauld 1989, 1992). In the cited work on copolymerization, the bis(diene) was chosen to be resistant against ionization by the initiator used. As to the dienophile functionality, propenyl rather than vinyl moieties were selected because terminal methyl groups sharply enhance the ionizability of the alkene functions. The polymerization shown in Scheme 7.18 was performed in dichloromethane at 0°C. [Pg.361]

We note that there are NMR-based kinetic studies on zirconocene-catalyzed pro-pene polymerization [32], Rh-catalyzed asymmetric hydrogenation of olefins [33], titanocene-catalyzed hydroboration of alkenes and alkynes [34], Pd-catalyzed olefin polymerizations [35], ethylene and CO copolymerization [36] and phosphine dissociation from a Ru-carbene metathesis catalyst [37], just to mention a few. [Pg.12]

Interpolymerization of two different alkenes is termed cross polymerization or, more usually, copolymerization. [Pg.22]

When a pure alkene is polymerized and only one form of the olefin is possible or when it is definitely known that only one molecular form is reacting under the polymerizing conditions, there is no need to decide which molecule is the acceptor and which the donor molecule. On the other hand, when two different olefins are copolymerized, it is necessary... [Pg.57]

Steric effects similar to those in radical copolymerization are also operative in cationic copolymerizations. Table 6-9 shows the effect of methyl substituents in the a- and 11-positions of styrene. Reactivity is increased by the a-methyl substituent because of its electron-donating power. The decreased reactivity of P-methylstyrene relative to styrene indicates that the steric effect of the P-substituent outweighs its polar effect of increasing the electron density on the double bond. Furthermore, the tranx-fl-methylstyrene appears to be more reactive than the cis isomer, although the difference is much less than in radical copolymerization (Sec. 6-3b-2). It is worth noting that 1,2-disubstituted alkenes have finite r values in cationic copolymerization compared to the values of zero in radical copolymerization (Table 6-2). There is a tendency for 1,2-disubstituted alkenes to self-propagate in cationic copolymerization, although this tendency is low in the radical reaction. [Pg.508]

A variety of reactants—including sulfur dioxide, carhon monoxide, and oxygen, which do not homopolymerize—undergo radical copolymerization with alkenes to form polymeric sul-fones [Bae et al., 1988 Cais and O Donnell, 1976 Dainton and Ivin, 1958 Floijanczyk et al., 1987 Soares, 1997], ketones [Sommazzi and Garhassi, 1997 Starkweather, 1987, and peroxides [Cais and Bovey, 1977 Mukundan and Kishore, 1987 Nukui et al., 1982] ... [Pg.528]

There is a tendency toward alternation in the copolymerization of ethylene with carbon monoxide. Copolymerizations of carbon monoxide with tetrafluoroethylene, vinyl acetate, vinyl chloride, and acrylonitrile have been reported but with few details [Starkweather, 1987]. The reactions of alkenes with oxygen and quinones are not well defined in terms of the stoichiometry of the products. These reactions are better classified as retardation or inhibition reactions because of the very slow copolymerization rates (Sec. 3-7a). Other copolymerizations include the reaction of alkene monomers with sulfur and nitroso compounds [Green et al., 1967 Miyata and Sawada, 1988]. [Pg.528]


See other pages where Copolymerization, alkenes is mentioned: [Pg.1122]    [Pg.285]    [Pg.304]    [Pg.9]    [Pg.1122]    [Pg.285]    [Pg.304]    [Pg.9]    [Pg.453]    [Pg.8]    [Pg.291]    [Pg.7]    [Pg.114]    [Pg.179]    [Pg.180]    [Pg.182]    [Pg.183]    [Pg.183]    [Pg.184]    [Pg.52]    [Pg.212]    [Pg.482]    [Pg.7]    [Pg.205]    [Pg.273]    [Pg.201]    [Pg.118]    [Pg.132]    [Pg.44]    [Pg.58]    [Pg.119]    [Pg.154]    [Pg.310]    [Pg.528]    [Pg.528]   
See also in sourсe #XX -- [ Pg.1588 ]

See also in sourсe #XX -- [ Pg.999 , Pg.1000 ]




SEARCH



Alkene copolymerization with

Alkene/CO copolymerization

Alkenes copolymerization with carbon

Alternating copolymerization of alkenes and carbon monoxide

Copolymerization of Butadiene with Ethylene or 1-Alkenes

Copolymerization of alkenes

Copolymerization of alkenes and

Miscellaneous Copolymerizations of Alkenes

© 2024 chempedia.info