Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkene cluster

Infrared v(C-C) Stretching Frequencies in Triosmium Alkyne and Alkene Clusters... [Pg.185]

The activation of silylene complexes is induced both photochemically or by addition of a base, e.g. pyridine. A similar base-induced cleavage is known from the chemistry of carbene complexes however, in this case the carbenes so formed dimerize to give alkenes. Finally, a silylene cleavage can also be achieved thermally. Melting of the compounds 4-7 in high vacuum yields the dimeric complexes 48-51 with loss of HMPA. The dimers, on the other hand, can be transformed into polysilanes and iron carbonyl clusters above 120 °C. In all cases, the resulting polymers have been identified by spectroscopic methods. [Pg.27]

These carbene (or alkylidene) complexes are used for various transformations. Known reactions of these complexes are (a) alkene metathesis, (b) alkene cyclopropanation, (c) carbonyl alkenation, (d) insertion into C-H, N-H and O-H bonds, (e) ylide formation and (f) dimerization. The reactivity of these complexes can be tuned by varying the metal, oxidation state or ligands. Nowadays carbene complexes with cumulated double bonds have also been synthesized and investigated [45-49] as well as carbene cluster compounds, which will not be discussed here [50]. [Pg.6]

A related unprecedented double insertion of electron-deficient alkynes has also been reported in the reactions of the linear Pt2Pd heterotrimetallic complex 64 with 65 (RO2CCSCR) (Scheme 24) [95,96]. A series of unsymmetri-cal A-frame clusters 68 has thus been obtained in which a first insertion of the alkyne takes place site-selectively into the Pt-Pd bond vs the Pt-Pt bond (66). After a zwitter-ionic polar activation of the resulting inserted alkene (67), a subsequent reaction with the phosphine unit of the dpmp allows one to obtain the products 68 via the nucleophilic migration of the terminal P atom from the Pd center to the CH terminal carbon (formation of the P-C bond). [Pg.59]

Propyhdyne formed from propene on lr4 supported on y-Al203 was observed by IR and NMR spectroscopies [38]. When ethene or propene was brought in contact with oxide-supported lr4 [39,40], Ire [39,40], or Rhe (A.M. Argo and B.C. Gates BC, impubhshed results) in the presence of H2, hydrocarbon hgands were formed (namely, alkyls and /r-bonded alkenes), which have been inferred from IR spectra to be intermediates in hydrogenation to make alkanes, as discussed later. The population of these hydrocarbon ligands on the supported clusters depends sensitively on the conditions, such as reactant partial pressures and temperature. [Pg.224]

Ru3(CO)12(117)3] and [H4Ru4(CO)11(117)] as catalyst precursors in the hydrogenation of non-activated alkenes under biphasic conditions. Each cluster displays activity under moderate conditions, ca. 60 atm. H2 at 60 °C with catalytic turnovers up to ca. 500. The trinuclear clusters undergo transformations during reaction but can be used repeatedly without loss of activity.325... [Pg.118]

The trinuclear cluster [(/i-H)2Ru3(/i3-0)(C0)5(DPPM)2] is also an efficient catalyst for alkene hydrogenation reaction, for which Bergounhou proposed the catalytic Scheme 73.38... [Pg.126]

A few years later, the same group extended this strategy in order to access metabolically stable C-glycosyl clusters containing long-arm spacers via a sequence of transition metal-catalyzed transformations (Scheme 11).93 In this context, crossmetathesis reactions of various C-glycosyl compounds with alkenes having available... [Pg.193]

Among the clusters derivatized by these methods, [ Mo(tacn) 3(PdCl)(n3-S)4]3+ (tacn = 1,4,7-triazacyclononane) is noteworthy, since this cluster can bind the substrate molecules such as alkene and CO at its tetrahedral Pd site generated by dissociation of the Cl anion. More interestingly, it has turned out that addition of ROH and RCOOH to various alkynes proceeds at this Pd site to give vinyl ethers and vinyl carboxylates catalytically.53 These reactions represent one of the yet rare examples that are catalyzed by well-defined cubane-type clusters with retention of their core structures. [Pg.724]

In this chapter, we will study the elementary reaction steps of these mechanisms focusing primarily on the anthraphos systems. This chapter begins with a description of the impact of different methods (coupled cluster, configuration interaction and various DFT functionals), different basis sets, and phosphine substituents on the oxidative addition of methane to a related Ir system, [CpIr(III)(PH3)Me]+. Then, it compares the elementary reaction steps, including the effect of reaction conditions such as temperature, hydrogen pressure, alkane and alkene concentration, phosphine substituents and alternative metals (Rh). Finally, it considers how these elementary steps constitute the reaction mechanisms. Additional computational details are provided at the end of the chapter. [Pg.323]

The higher catalytic activity of the cluster compound [Pd4(dppm)4(H2)](BPh4)2 [21] (20 in Scheme 4.12) in DMF with respect to less coordinating solvents (e.g., THF, acetone, acetonitrile), combined with a kinetic analysis, led to the mechanism depicted in Scheme 4.12. Initially, 20 dissociates into the less sterically demanding d9-d9 solvento-dimer 21, which is the active catalyst An alkyne molecule then inserts into the Pd-Pd bond to yield 22 and, after migratory insertion into the Pd-H bond, the d9-d9 intermediate 23 forms. Now, H2 can oxidatively add to 23 giving rise to 24 which, upon reductive elimination, results in the formation of the alkene and regenerates 21. [Pg.87]

Scheme 8.3 Mechanism for the hydrogenation of alkenes catalyzed by anion-promoted osmium clusters (CO ligands omitted for clarity). Scheme 8.3 Mechanism for the hydrogenation of alkenes catalyzed by anion-promoted osmium clusters (CO ligands omitted for clarity).
Much emphasis has been placed in recent times on easily recoverable liquid bi-phasic catalysts, including metal clusters in nonconventional solvents. For instance, aqueous solutions of the complexes [Ru3(CO)12.x(TPPTS)x] (x=l, 2, 3 TPPTS = triphenylphosphine-trisulfonate, P(m-C6H4S03Na)3) catalyze the hydrogenation of simple alkenes (1-octene, cyclohexene, styrene) at 60°C and 60 bar H2 at TOF up to 500 h 1 [24], while [Ru i(CO)C (TPPMS) >,] (TPPMS = triphenylphos-phine-monosulfonate, PPh2(m-C6H4S03Na) is an efficient catalyst precursor for the aqueous hydrogenation of the C=C bond of acrylic acid (TOF 780 h 1 at 40 °C and 3 bar H2) and other activated alkenes [25]. The same catalysts proved to be poorly active in room temperature ionic liquids such as [bmim][BF4] (bmim= Tbutyl-3-methylimidazolium). No details about the active species involved are known at this point. [Pg.205]


See other pages where Alkene cluster is mentioned: [Pg.173]    [Pg.173]    [Pg.440]    [Pg.179]    [Pg.342]    [Pg.399]    [Pg.126]    [Pg.49]    [Pg.144]    [Pg.69]    [Pg.122]    [Pg.123]    [Pg.108]    [Pg.113]    [Pg.226]    [Pg.450]    [Pg.456]    [Pg.344]    [Pg.45]    [Pg.212]    [Pg.125]    [Pg.125]    [Pg.154]    [Pg.315]    [Pg.252]    [Pg.218]    [Pg.5]    [Pg.370]    [Pg.255]    [Pg.42]    [Pg.69]    [Pg.78]    [Pg.202]    [Pg.206]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



© 2024 chempedia.info