Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkene association

From all the above observations, it was concluded that, for diphosphine chelate complexes, the hydrogenation stage occurs after alkene association thus, the unsaturated pathway depicted in Scheme 1.21 was proposed [31 a, c, 74]. The monohydrido-alkyl complex is formed by addition of dihydrogen to the en-amide complex, followed by transfer of a single hydride. Reductive elimination of the product regenerates the active catalysts and restarts the cycle. The monohydrido-alkyl intermediate was also observed and characterized spectroscopically [31c, 75], but the catalyst-substrate-dihydrido complex was not detected. [Pg.26]

HRh(CO)2(diphosphine) isomers, followed by CO dissociation. For this uphill process, a very low barrier is proposed. As we know, Morokuma and coworkers, using model systems, computed a barrier for ee ea conversion of 40 kJ.mol 1 [17], and a very low barrier for CO dissociation [23], Alkene association is followed by hydride migration (alkene insertion) and CO coordination to obtain either a linear or a branched... [Pg.173]

Since the metal-alkene association preceding the peroxymetalation reaction in mechanism (B) is a pure Lewis acid/Lewis base interaction, it would be expected that compounds having alkylperoxy groups bonded to a Lewis acid center should be active for the epoxidation of alkenes. This is indeed found for boron compounds, which are active as catalysts for the epoxidation of alkenes by alkyl hydroperoxides.246,247 Isolated boron tris(alkyl peroxides), B(OOR)3, have been shown to epoxidize alkenes stoichiometrically, presumably through alkylperoxyboration of the double bond (equation 76).248... [Pg.345]

It has been proposed that oxidative addition, rather than alkene association or migratory insertion, is the enantioselective step in the intramolecular Mizoroki-Heck reaction [17]. The snbstrates studied are axially chiral o-iodoanilides 41 with N-Ar rotational barriers that vary from <20 to SOkcalmor depending on the size of (Scheme 12.9) [18]. [Pg.440]

The suggestion is then made that the stereoconlrolling step in asymmetric Mizoroki-Heck reactions is oxidative addition (via dynamic kinetic resolution) rather than alkene association or migratory insertion. The implication is that only substrates capable of a dynamic kinetic resolution may cyclize with high enantioselectivity. This would limit the substrate scope of the asymmetric intramolecular Mizoroki-Heck reaction. While the dynamic kinetic resolution during the oxidative addition may be a component of the overall stereoselectivity, it does not rule out contributions from later events in the mechanistic pathway and does not explain the effect of additives on selectivity. What has been shown is that the axial chirality of the o-iodoanilides (as with any enantioenriched isomer of a chiral precursor) influences the stereochemical outcome of their reactions. [Pg.442]

The common names of these alkenes are c/s and trans di tert butylethylene In cases such as this the common names are somewhat more convenient than the lUPAC names because they are more readily associated with molecular structure... [Pg.200]

Figures 7 13 and 7 14 depict the stereochemical relationships associated with anti addition of bromine to (E) and (Z) 2 butene respectively The trans alkene (E) 2 butene yields only meso 2 3 dibromobutane but the cis alkene (Z) 2 butene gives a racemic mixture of 2R 3R) and 2S 3S) 2 3 dibromobutane... Figures 7 13 and 7 14 depict the stereochemical relationships associated with anti addition of bromine to (E) and (Z) 2 butene respectively The trans alkene (E) 2 butene yields only meso 2 3 dibromobutane but the cis alkene (Z) 2 butene gives a racemic mixture of 2R 3R) and 2S 3S) 2 3 dibromobutane...
Heterogeneous reaction (Section 6 1) A reaction involving two or more substances present in different phases Hydro genation of alkenes is a heterogeneous reaction that takes place on the surface of an insoluble metal catalyst Heterolytic cleavage (Section 4 16) Dissociation of a two electron covalent bond in such a way that both electrons are retained by one of the initially bonded atoms Hexose (Section 25 4) A carbohydrate with six carbon atoms High density lipoprotein (HDL) (Section 26 11) A protein that carries cholesterol from the tissues to the liver where it is metabolized HDL is often called good cholesterol Histones (Section 28 9) Proteins that are associated with DNA in nucleosomes... [Pg.1285]

In contrast, the ultrasonic irradiation of organic Hquids has been less studied. SusHck and co-workers estabHshed that virtually all organic Hquids wiU generate free radicals upon ultrasonic irradiation, as long as the total vapor pressure is low enough to allow effective bubble coUapse (49). The sonolysis of simple hydrocarbons (for example, alkanes) creates the same kinds of products associated with very high temperature pyrolysis (50). Most of these products (H2, CH4, and the smaller 1-alkenes) derive from a weU-understood radical chain mechanism. [Pg.262]

Particles are the major cause of the ha2e and the brown color that is often associated with smog. The three most important types of particles produced in smog are composed of organics, sulfates, and nitrates. Organic particles are formed when large VOC molecules, especially aromatics and cycHc alkenes, react with each other and form condensable products. Sulfate particles are formed by a series of reactions initiated by the attack of OH on SO2 in the gas phase or by Hquid-phase reactions. Nitrate particles are formed by... [Pg.372]

Alkenes with between 4 and 24 carbon atoms react with phenol to produce an unrefined phenol—alkylphenol mixture. This mixture is fed to the distillation train where the phenol is removed for recycle and the product is isolated. The product is then stored in heated tanks made of stainless steel or phenoHc resin lined carbon steel. These tanks are blanketed with inert gas to avoid product discoloration associated with oxidation. [Pg.64]

Among the cases in which this type of kinetics have been observed are the addition of hydrogen chloride to 2-methyl-1-butene, 2-methyl-2-butene, 1-mefliylcyclopentene, and cyclohexene. The addition of hydrogen bromide to cyclopentene also follows a third-order rate expression. The transition state associated with the third-order rate expression involves proton transfer to the alkene from one hydrogen halide molecule and capture of the halide ion from the second ... [Pg.354]

In 1974, Hegedus and coworkers reported the pa]ladium(II)-promoted addition of secondary amines to a-olefins by analogy to the Wacker oxidation of terminal olefins and the platinum(II) promoted variant described earlier. This transformation provided an early example of (formally) alkene hydroamination and a remarkably direct route to tertiary amines without the usual problems associated with the use of alkyl halide electrophiles. [Pg.136]

Another important reaction associated with the name of Sharpless is the so-called Sharpless dihydroxylation i.e. the asymmetric dihydroxylation of alkenes upon treatment with osmium tetroxide in the presence of a cinchona alkaloid, such as dihydroquinine, dihydroquinidine or derivatives thereof, as the chiral ligand. This reaction is of wide applicability for the enantioselective dihydroxylation of alkenes, since it does not require additional functional groups in the substrate molecule ... [Pg.256]

Bordwell and Garbisch71 contested this conclusion since they found that nitric acid in acetic anhydride prepared at —10 °C contained a much less effective nitrating species (the nitric acid could be recovered quantitatively) than when mixed at 25 °C and cooled to —10 °C (the nitric acid being then mostly unrecoverable). Further, these latter solutions reacted with alkenes to give predominantly cis addition products (nitro-acetates), whi h indicates association of the nitronium ion with some other species. It has been argued72 that this does not necessarily follow, since nitration of aromatics may involve a different... [Pg.35]

More recently, Grubbs et al. obtained a refined mechanistic picture of the initiating step by conducting a 31P NMR spectroscopic study of the phosphine exchange in precatalysts 12-A. These investigations revealed that substitution of the phosphine proceeds via a dissociative-associative mechanism, i.e., a 14-electron species 12-B is involved that coordinates the alkene to give a 16-electron species 12-C (Scheme 12) [26a]. Increased initiation rates are observed if the substituents R and the phosphine ligands PR3 in precatalysts... [Pg.236]

Apart from the question whether the 14-electron species 12-B is a relevant intermediate, computational studies have been conducted in order to shed light on other aspects of the mechanism. Stereochemical issues, for instance, have not yet been investigated by experiment. DFT calculations suggest that attack of the alkene to 12-B occurs trans, because cis attack is associated with a rather high barrier [30b]. [Pg.237]

View the animation of the alkene addition mechanism associated with Fig. 18.9 on the Web site for this book, (a) In the addition of HC1 to propene an intermediate is formed. Is that intermediate positively or... [Pg.869]

Low oxidation states - An important characteristic of transition metal chemistry is the formation of compounds with low (often zero or negative) oxidation states. This has little parallel outside the transition elements. Such complexes are frequently associated with ligands like carbon monoxide or alkenes. Compounds analogous to Fe(CO)s, [Ni(cod)2] (cod = 1,4-cyclooctadiene) or [Pt(PPh3]3] are very rarely encountered outside the transition-metal block. The study of the low oxidation compounds is included within organometallic chemistry. We comment about the nature of the bonding in such compounds in Chapter 6. [Pg.18]

The Markovnikov regioselectivity of the gem-alkenes is associated with a chemoselectivity. in favour of methanol attack, significantly greater than that observed for the other alkenes. If no sodium bromide is added to the reaction medium, no dibromide is observed for this series. Therefore, these alkenes behave as highly conjugated olefins, as regards their regio- and chemo-selectivity. In other words, the bromination intermediates of gem-alkenes resemble P-bromocarbocations, rather than bromonium ions. Theoretical calculations (ref. 8) but not kinetic data (ref. 14) support this conclusion. [Pg.108]


See other pages where Alkene association is mentioned: [Pg.697]    [Pg.419]    [Pg.99]    [Pg.425]    [Pg.133]    [Pg.436]    [Pg.440]    [Pg.445]    [Pg.407]    [Pg.35]    [Pg.406]    [Pg.719]    [Pg.697]    [Pg.419]    [Pg.99]    [Pg.425]    [Pg.133]    [Pg.436]    [Pg.440]    [Pg.445]    [Pg.407]    [Pg.35]    [Pg.406]    [Pg.719]    [Pg.201]    [Pg.530]    [Pg.70]    [Pg.51]    [Pg.649]    [Pg.201]    [Pg.530]    [Pg.654]    [Pg.103]    [Pg.209]    [Pg.245]    [Pg.66]    [Pg.235]    [Pg.172]    [Pg.111]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Alkene metathesis associative mechanism

Alkenes association constants

Alkenes other reactions associated with

Group Frequencies Associated with Alkenes

© 2024 chempedia.info