Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkaline performance

The residual liquid in the flask is a dilute alkaline solution of sodium acetate. To liberate the acetic acid, add dilute sulphuric acid until the solution is definitely acid to litmus, and then distil off about 20 ml. Perform on this aqueous distillate the tests for acetic acid given on p. 347-... [Pg.100]

Colorations or coloured precipitates are frequently given by the reaction of ferric chloride solution with.(i) solutions of neutral salts of acids, (ii) phenols and many of their derivatives, (iii) a few amines. If a free acid is under investigation it must first be neutralised as follows Place about 01 g. of the acid in a boiling-tube and add a slight excess of ammonia solution, i,e., until the solution is just alkaline to litmus-paper. Add a piece of unglazed porcelain and boil until the odour of ammonia is completely removed, and then cool. To the solution so obtained add a few drops of the "neutralised ferric chloride solution. Perform this test with the following acids and note the result ... [Pg.332]

The main example presented will be the alkaline-hypohalite method as it is the easiest to acquire the necessary chemicals. It Is of interest to note that the alkaline-halide method is much easier to perform, process- wise, in that it is more forgiving of sloppy technique. [Pg.260]

Oxidation, already described in neutral and acidic media, may also be performed in basic medium. An alkaline solution of H2O2 reacts with 4-thiazoline 2-thione to yield thiazole-2-sulfonic acid (201-203), whereas alkaline oxidation performed with (NH )2S20g yields the disulfides (148). [Pg.397]

The formation of trisubstituted A-4 thiazoline-2-ones from the corresponding thiones analogs can be performed by oxidation with hydrogen peroxide under basic conditions. This reaction is strongly dependent on the pH of the medium. Higher yields are obtained in strongly alkaline solution (883). [Pg.397]

Hydrolysis of cationic polyacrylamides prepared from copolymeri2ation of acrylamide and cationic ester monomer can occur under very mild conditions. A substantial loss in cationicity can cause a significant loss in performance in many apphcations. Copolymers [69418-26-4] of acrylamide and acryloxyethyltrimethylammonium chloride [44992-01 -0] CgH gN02(Cl), for instance, lose cationicity rapidly at alkaline pH (37). [Pg.140]

Anionic and nonionic polyacrylamides effectively remove suspended soHds such as silt and clay from potable water. SuppHers provide special grades which meet EPA/FDA regulations for residual acrylamides. A recent pubHcation (102) states that hydrolyzed polyacrylamides with narrow interchain charge distributions provide better performance in flocculation of clay. These polymers were prepared by alkaline hydrolysis. (See Flocculating agents.)... [Pg.143]

Processes rendered obsolete by the propylene ammoxidation process (51) include the ethylene cyanohydrin process (52—54) practiced commercially by American Cyanamid and Union Carbide in the United States and by I. G. Farben in Germany. The process involved the production of ethylene cyanohydrin by the base-cataly2ed addition of HCN to ethylene oxide in the liquid phase at about 60°C. A typical base catalyst used in this step was diethylamine. This was followed by liquid-phase or vapor-phase dehydration of the cyanohydrin. The Hquid-phase dehydration was performed at about 200°C using alkah metal or alkaline earth metal salts of organic acids, primarily formates and magnesium carbonate. Vapor-phase dehydration was accomphshed over alumina at about 250°C. [Pg.183]

The lignitic coals of the northern United States tend to have low sulfur contents, making them attractive for boilet fuels to meet sulfur-emission standards. However, low sulfur content coals have impaired the performance of electrostatic precipitators. The ash of these coals tends to be high in alkaline earths (Ca, Mg) and alkaUes (Na, K). As a result, the ash can trap sulfur as sulfites and sulfates (see Airpollution control methods). [Pg.155]

The reaction is very slow in neutral solution, but the equiUbrium shifts toward the lactam rather than glutamic acid. Under strongly acidic or alkaline conditions, the ring-opening reaction requires a very short time (10). Therefore, neutralization of L-glutamic acid should be performed cautiously because intramolecular dehydration is noticeable even below 190°C. [Pg.303]

Their performance falls short of most present finishes, particularly in durabiUty, resistance to chlorine-containing bleaches, and formaldehyde release, and they are not used much today. Both urea and formaldehyde are relatively inexpensive, and manufacture is simple ie, 1 —2 mol of formaldehyde as an aqueous solution reacts with 1 mol of urea under mildly alkaline conditions at slightly elevated temperatures. [Pg.329]

Organic tellurium compounds and siliceous materials, ie, rock, ore, or concentrates, are fused with mixtures of sodium carbonate and alkaline oxidants, ie, sodium peroxide, potassium nitrate, or potassium persulfate. For volatile compounds, this fusion is performed in a bomb or a closed-system microwave digestion vessel. An oxidising fusion usually converts tellurium into Te(VI) rather than Te(IV). [Pg.388]

The main electroceramic apphcations of titanium dioxide derive from its high dielectric constant (see Table 6). Rutile itself can be used as a dielectric iu multilayer capacitors, but it is much more common to use Ti02 for the manufacture of alkaline-earth titanates, eg, by the cocalciuation of barium carbonate and anatase. The electrical properties of these dielectrics are extremely sensitive to the presence of small (<20 ppm) quantities of impurities, and high performance titanates require consistently pure (eg, >99.9%) Ti02- Typical products are made by the hydrolysis of high purity titanium tetrachloride. [Pg.121]

Obtaining maximum performance from a seawater distillation unit requires minimising the detrimental effects of scale formation. The term scale describes deposits of calcium carbonate, magnesium hydroxide, or calcium sulfate that can form ia the brine heater and the heat-recovery condensers. The carbonates and the hydroxide are conventionally called alkaline scales, and the sulfate, nonalkaline scale. The presence of bicarbonate, carbonate, and hydroxide ions, the total concentration of which is referred to as the alkalinity of the seawater, leads to the alkaline scale formation. In seawater, the bicarbonate ions decompose to carbonate and hydroxide ions, giving most of the alkalinity. [Pg.241]

The dosage of flucytosine is 150—200 mg/kg orally in four portions every six hours. A 1% flucytosine solution has been developed for intravenous adrninistration. In some countries, a 10% ointment is also available. In patients with normal renal function, flucytosine is seldom toxic, but occasionally severe toxicity may be observed (leukopenia and thrombocytopenia). Plasma levels should be determined and the dose in patients with impaired renal function should be checked. Liver function tests (transaininases and alkaline phosphatase) should be performed regularly. In some patients with high flucytosine plasma levels, hepatic disorders have been observed (24). [Pg.256]

Cylindrical alkaline cells are 2inc—manganese dioxide cells having an alkaline electrolyte, which are constmcted in the standard cylindrical si2es, R20 "D", R14 "C", R6 "AA", R03 "AAA", as well as a few other less common si2es. They can be used in the same types of devices as ordinary Leclanchn and 2inc chloride cells. Moreover, the high level of performance makes them ideally suited for appHcations such as toys, audio devices, and cameras. [Pg.523]

Performance. Alkaline manganese-dioxide batteries have relatively high energy density, as can be seen from Table 2. This results in part from the use of highly pure materials, formed into electrodes of near optimum density. Moreover, the cells are able to function well with a rather small amount of electrolyte. The result is a cell having relatively high capacity at a fairly reasonable cost. [Pg.525]

Fig. 7. Performance comparison of "D"-size alkaline—manganese vs carbon-zinc batteries at 21°C on (a) alight drain 150-Q continuous test at 21°C, and... Fig. 7. Performance comparison of "D"-size alkaline—manganese vs carbon-zinc batteries at 21°C on (a) alight drain 150-Q continuous test at 21°C, and...
Fig. 8. Effect of temperature on relative discharge performance of a fresh "D"-si2e battery for service on simulated ratio use, 25- Q 4-h/d test for (a) an alkaline—manganese battery undergoing 260 h of service, and (b) a carbon—2inc battery undergoing 70 h of service (22). Fig. 8. Effect of temperature on relative discharge performance of a fresh "D"-si2e battery for service on simulated ratio use, 25- Q 4-h/d test for (a) an alkaline—manganese battery undergoing 260 h of service, and (b) a carbon—2inc battery undergoing 70 h of service (22).

See other pages where Alkaline performance is mentioned: [Pg.91]    [Pg.177]    [Pg.579]    [Pg.586]    [Pg.459]    [Pg.549]    [Pg.215]    [Pg.274]    [Pg.334]    [Pg.514]    [Pg.527]    [Pg.223]    [Pg.224]    [Pg.512]    [Pg.19]    [Pg.20]    [Pg.20]    [Pg.20]    [Pg.140]    [Pg.209]    [Pg.304]    [Pg.328]    [Pg.490]    [Pg.150]    [Pg.157]    [Pg.36]    [Pg.516]    [Pg.524]    [Pg.526]    [Pg.526]    [Pg.526]    [Pg.527]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Alkaline-manganese dioxide primary batteries performance

Performance Capabilities and Uses of Alkaline Batteries

Performance zinc/alkaline/manganese dioxide battery

© 2024 chempedia.info