Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkalies, electrons

Table I. Alkali Electron Affinities (in eV) obtained from Relativistic and Nonrelativistic Effective Potential QMC Simulations... Table I. Alkali Electron Affinities (in eV) obtained from Relativistic and Nonrelativistic Effective Potential QMC Simulations...
Lithium chemistry Lithium is an alkali metal, electronic configuration ls 2s forming a... [Pg.241]

Simple metals like alkalis, or ones with only s and p valence electrons, can often be described by a free electron gas model, whereas transition metals and rare earth metals which have d and f valence electrons camiot. Transition metal and rare earth metals do not have energy band structures which resemble free electron models. The fonned bonds from d and f states often have some strong covalent character. This character strongly modulates the free-electron-like bands. [Pg.129]

Miller T M, Leopold D G, Murray K K and Lineberger W C 1986 Electron affinities of the alkali halides and the structure of their negative ions J. Chem. Phys. 85 2368-75... [Pg.823]

The simplest case arises when the electronic motion can be considered in temis of just one electron for example, in hydrogen or alkali metal atoms. That electron will have various values of orbital angular momentum described by a quantum number /. It also has a spin angular momentum described by a spin quantum number s of d, and a total angular momentum which is the vector sum of orbital and spin parts with... [Pg.1133]

If the molecules could be detected with 100% efficiency, the fluxes quoted above would lead to impressive detected signal levels. The first generation of reactive scattering experiments concentrated on reactions of alkali atoms, since surface ionization on a hot-wire detector is extremely efficient. Such detectors have been superseded by the universal mass spectrometer detector. For electron-bombardment ionization, the rate of fonnation of the molecular ions can be written as... [Pg.2062]

One current limitation of orbital-free DFT is that since only the total density is calculated, there is no way to identify contributions from electronic states of a certain angular momentum character /. This identification is exploited in non-local pseudopotentials so that electrons of different / character see different potentials, considerably improving the quality of these pseudopotentials. The orbital-free metliods thus are limited to local pseudopotentials, connecting the quality of their results to the quality of tlie available local potentials. Good local pseudopotentials are available for the alkali metals, the alkaline earth metals and aluminium [100. 101] and methods exist for obtaining them for other atoms (see section VI.2 of [97]). [Pg.2218]

NakatsujI H, Kuwano R, Merita H and Nakal H 1993 Dipped adcluster model and SAC-CI method applied to harpooning, chemical luminescence and electron emission in halogen chemisorption on alkali metal surface J. Mol. Catal. 82 211-28... [Pg.2235]

The occupation of each tetraliedral and octaliedral site in tliese regularly oriented arrays of cavities by, for example, alkali atoms results in tire transfer of a single electron to tire fullerene s conduction band (ti ) [58]. Consequently,... [Pg.2414]

Much of tills chapter concerns ET reactions in solution. However, gas phase ET processes are well known too. See figure C3.2.1. The Tiarjioon mechanism by which halogens oxidize alkali metals is fundamentally an electron transfer reaction [2]. One might guess, from tliis simple reaction, some of tlie stmctural parameters tliat control ET rates relative electron affinities of reactants, reactant separation distance, bond lengtli changes upon oxidation/reduction, vibrational frequencies, etc. [Pg.2972]

H3 (and its isotopomers) and the alkali metal triiners (denoted generally for the homonuclears by X3, where X is an atom) are typical Jahn-Teller systems where the two lowest adiabatic potential energy surfaces conically intersect. Since such manifolds of electronic states have recently been discussed [60] in some detail, we review in this section only the diabatic representation of such surfaces and their major topographical details. The relevant 2x2 diabatic potential matrix W assumes the fomi... [Pg.584]

In this section, we extend the above discussion to the isotopomers of X3 systems, where X stands for an alkali metal atom. For the lowest two electronic states, the permutational properties of the electronic wave functions are similar to those of Lij. Their potential energy surfaces show that the baniers for pseudorotation are very low [80], and we must regard the concerned particles as identical. The Na atom has a nuclear spin " K, and K have nuclear... [Pg.604]

The table contains vertical groups of elements each member of a group having the same number of electrons in the outermost quantum level. For example, the element immediately before each noble gas, with seven electrons in the outermost quantum level, is always a halogen. The element immediately following a noble gas, with one electron in a new quantum level, is an alkali metal (lithium, sodium, potassium, rubidium, caesium, francium). [Pg.12]

The alkali metals have the interesting property of dissolving in some non-aqueous solvents, notably liquid ammonia, to give clear coloured solutions which are excellent reducing agents and are often used as such in organic chemistry. Sodium (for example) forms an intensely blue solution in liquid ammonia and here the outer (3s) electron of each sodium atom is believed to become associated with the solvent ammonia in some way, i.e. the system is Na (solvent) + e" (sohem). [Pg.126]

Solutions of alkali metals in liquid ammonia are used in organic chemistry as reducing agents. The deep blue solutions effectively contain solvated electrons (p. 126), for example... [Pg.221]

Bromine has a lower electron affinity and electrode potential than chlorine but is still a very reactive element. It combines violently with alkali metals and reacts spontaneously with phosphorus, arsenic and antimony. When heated it reacts with many other elements, including gold, but it does not attack platinum, and silver forms a protective film of silver bromide. Because of the strong oxidising properties, bromine, like fluorine and chlorine, tends to form compounds with the electropositive element in a high oxidation state. [Pg.322]

Cobalt has an odd number of electrons, and does not form a simple carbonyl in oxidation state 0. However, carbonyls of formulae Co2(CO)g, Co4(CO)i2 and CoJCO),6 are known reduction of these by an alkali metal dissolved in liquid ammonia (p. 126) gives the ion [Co(CO)4] ". Both Co2(CO)g and [Co(CO)4]" are important as catalysts for organic syntheses. In the so-called oxo reaction, where an alkene reacts with carbon monoxide and hydrogen, under pressure, to give an aldehyde, dicobalt octacarbonyl is used as catalyst ... [Pg.405]

Within the periodic Hartree-Fock approach it is possible to incorporate many of the variants that we have discussed, such as LFHF or RHF. Density functional theory can also be used. I his makes it possible to compare the results obtained from these variants. Whilst density functional theory is more widely used for solid-state applications, there are certain types of problem that are currently more amenable to the Hartree-Fock method. Of particular ii. Icvance here are systems containing unpaired electrons, two recent examples being the clci tronic and magnetic properties of nickel oxide and alkaline earth oxides doped with alkali metal ions (Li in CaO) [Dovesi et al. 2000]. [Pg.165]

The alkali metals tend to ionize thus, their modeling is dominated by electrostatic interactions. They can be described well by ah initio calculations, provided that diffuse, polarized basis sets are used. This allows the calculation to describe the very polarizable electron density distribution. Core potentials are used for ah initio calculations on the heavier elements. [Pg.286]


See other pages where Alkalies, electrons is mentioned: [Pg.395]    [Pg.395]    [Pg.20]    [Pg.30]    [Pg.82]    [Pg.181]    [Pg.324]    [Pg.363]    [Pg.385]    [Pg.396]    [Pg.25]    [Pg.108]    [Pg.124]    [Pg.300]    [Pg.2202]    [Pg.2398]    [Pg.2415]    [Pg.2473]    [Pg.610]    [Pg.13]    [Pg.207]    [Pg.389]    [Pg.610]    [Pg.269]    [Pg.413]    [Pg.99]   
See also in sourсe #XX -- [ Pg.400 , Pg.401 ]




SEARCH



© 2024 chempedia.info