Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldolase pyruvate

DHAP-dependent aldolases Pyruvate dependent aldolases Deoxyribose 5 -phosphate aldolase —h... [Pg.69]

The isoenzyme patterns of aldolase, pyruvate kinase, and hexosaminidase have also been shown to undergo a change toward fetus-like patterns in hepatoma. [Pg.197]

TV-Acetyl neuraminic acid aldolase [from Clostridium perfringens, TV-acetyIneuraminic acid pyruvate lyase] [9027-60-5] 32,000 [EC 4.1.3.3]. Purified by extraction with H2O,... [Pg.507]

Due to mechanistic requirements, most of these enzymes are quite specific for the nucleophilic component, which most often is dihydroxyacetone phosphate (DHAP, 3-hydroxy-2-ox-opropyl phosphate) or pyruvate (2-oxopropanoate), while they allow a reasonable variation of the electrophile, which usually is an aldehyde. Activation of the donor substrate by stereospecific deprotonation is either achieved via imine/enamine formation (type 1 aldolases) or via transition metal ion induced enolization (type 2 aldolases mostly Zn2 )2. The approach of the aldol acceptor occurs stereospecifically following an overall retention mechanism, while facial differentiation of the aldehyde is responsible for the relative stereoselectivity. [Pg.586]

Commercial A -acetylneuraminic acid aldolase from Clostridium perfringens (NeuAcA EC 4.1.3.3) catalyzes the addition of pyruvate to A-acetyl-D-mannosamine. A number of sialic acid related carbohydrates are obtained with the natural substrate22"24 or via replacement by aldose derivatives containing modifications at positions C-2, -4, or -6 (Table 4)22,23,25 26. Generally, a high level of asymmetric induction is retained, with the exception of D-arabinose (epimeric at C-3) where stereorandom product formation occurs 25 2t The unfavorable equilibrium constant requires that the reaction must be driven forward by using an excess of one of the components in order to achieve satisfactory conversion (preferably 7-10 equivalents of pyruvate, for economic reasons). [Pg.591]

Table 4. IV-Acetylneuraminic Acid Aldolase Catalyzed Preparative Aldol Additions with Pyruvate... Table 4. IV-Acetylneuraminic Acid Aldolase Catalyzed Preparative Aldol Additions with Pyruvate...
Deoxy-D- /rce/ o-D- a/ac7i7-nonulosonie Acid (KDN) V-Acetylneuraminic Acid Aldolase Catalyzed Preparative Aldol Additions with Pyruvate Typical Procedure27 ... [Pg.592]

Mechanistically similar to the pyruvate lyases, 2-deoxy-D-ribose 5-phosphate aldolase (EC 4.1.2.4) catalyzes the addition of acetaldehyde to D-glyceraldehyde 3-phosphate. [Pg.594]

N-Acetylneuraminic acid aldolase (or sialic acid aldolase, NeuA EC 4.1.3.3) catalyzes the reversible addition of pyruvate (2) to N-acetyl-D-mannosamine (ManNAc (1)) in the degradation of the parent sialic acid (3) (Figure 10.4). The NeuA lyases found in both bacteria and animals are type I enzymes that form a Schiff base/enamine intermediate with pyruvate and promote a si-face attack to the aldehyde carbonyl group with formation of a (4S) configured stereocenter. The enzyme is commercially available and it has a broad pH optimum around 7.5 and useful stability in solution at ambient temperature [36]. [Pg.278]

The KDO aldolase (KdoA, EC 4.1.2.23) is involved in the catabolism of the eight-carbon sugar d-KDO, which is reversibly degraded to D-arabinose (15) and pyruvate (Figure 10.10). The enzyme has been partially purified from bacterial sources and studied for synthetic applications [71,74]. It seems that the KdoA, similar to... [Pg.281]

Inherited aldolase A deficiency and pyruvate kinase deficiency in erythrocytes cause hemolytic anemia. The exercise capacity of patients with muscle phos-phofiaictokinase deficiency is low, particularly on high-carbohydrate diets. By providing an alternative lipid fuel, eg, during starvation, when blood free fatty acids and ketone bodies are increased, work capacity is improved. [Pg.143]

These enzymes catalyse the non-hydrolytic cleavage of bonds in a substrate to remove specific functional groups. Examples include decarboxylases, which remove carboxylic acid groups as carbon dioxide, dehydrases, which remove water, and aldolases. The decarboxylation of pyruvic acid (10.60) to form acetaldehyde (10.61) takes place in the presence of pyruvic decarboxylase (Scheme 10.13), which requires the presence of thiamine pyrophosphate and magnesium ions for activity. [Pg.80]

Aldolases catalyze asymmetric aldol reactions via either Schiff base formation (type I aldolase) or activation by Zn2+ (type II aldolase) (Figure 1.16). The most common natural donors of aldoalses are dihydroxyacetone phosphate (DHAP), pyruvate/phosphoenolpyruvate (PEP), acetaldehyde and glycine (Figure 1.17) [71], When acetaldehyde is used as the donor, 2-deoxyribose-5-phosphate aldolases (DERAs) are able to catalyze a sequential aldol reaction to form 2,4-didexoyhexoses [72,73]. Aldolases have been used to synthesize a variety of carbohydrates and derivatives, such as azasugars, cyclitols and densely functionalized chiral linear or cyclic molecules [74,75]. [Pg.27]

The power of directed evolution has been demonstrated by the conversion of an aldolase into a new kind of aldolase. Wong and coworkers evolved a pyruvate-dependent sialic acid aldolase... [Pg.126]

I, 7-diphosphate.170 1 (f> This tetrose phosphate is involved with phosphoenol pyruvate in the formation of shikimic acid via 3-deoxy-2-keto-D-ara6ino-heptonic acid 7-phosphate and, hence, of aromatic compounds.170(d) A synthesis of the tetrose phosphate has been described.170 1 Aldolase shows a high affinity for the heptulose diphosphate and, compared with that for D-fructose 1,6-diphosphate, the rate of reaction is about 60 %. The enzyme transaldolase, purified 400-fold from yeast, catalyzes the following reversible reaction by transfer of the dihydroxyacetonyl group.l70(o>... [Pg.218]

The guilty party is the triose phosphate isomerase (TIM) reaction that interconverts DHAP and G3P. To be converted to pyruvate, the DHAP first has to be converted to G3P. TIM just moves the carbonyl group between the two carbons that don t have phosphate attached. TIM doesn t touch the phosphate. So, if the DHAP is labeled at the carbon that has the phosphate attached, the G3P that comes from DHAP will be labeled at the carbon with the phosphate attached. The carbon with the phosphate attached in the G3P that was produced directly by the aldolase reaction came from C-6 of glucose, but the carbon with the phosphate attached in the G3P that was produced from DHAP came from C-l of glucose. After TIM does it stuff, the carbon of G3P that has the phosphate will be... [Pg.250]

When grown in a mineral medium containing KDO as the only source of carbon, cells of Aerobacter cloacae can be induced to produce an enzyme that catalyzes the cleavage of KDO to give D-arabinose and pyruvic acid.89 This enzyme was purified 60-fold by Ghalambor and Heath.154 It has a pH optimum of 7, a KM = 6 mM, and an equilibrium constant of 77 mM. The reversible nature of the enzyme reaction can be utilized to synthesize 14C-labelled KDO from D-arabinose plus 14C-pyruvic acid. Cleavage of KDO as catalyzed by KDO aldolase has... [Pg.386]

Genetically-determined deficiency of G6PD is the most common cause of haemolysis arising from enzyme defects. Mutated glycolytic enzymes such as hexokinase, phosphofructokinase, aldolase and pyruvate kinase can also bring about haemolysis but the occurrence of these defects are much rarer than for G6PD deficiency (see Case N otes at the end of this chapter). [Pg.155]

A. Singly wound parallel /3 barrels Triosephosphate isomerase Pyruvate kinase domain 1 KDPG aldolase ( )... [Pg.257]

Catabolic enzyme NANA aldolase catalyses cleavage of NANA to form NAM and pyruvic acid, the latter being a more attractive material for a chemoenzymatic process. It has long been known that the reverse reaction may be used for NANA synthesis. However, this approach to a manufacturing process also has complications. [Pg.33]

NAM is produced by base-catalysed epimerization of N-acetyl-o-glucosamine (NAG), generating an unfavourable 1 4 mixture of NAM NAG. NAG, although not a substrate for the aldolase, inhibits the reaction. In addition, excess pyruvate is required to push the equilibrium in favour of product formation (Scheme 1.31). Although 90% yields can be obtained at laboratory scale using E. coli NANA aldolase using a NAG NAM mixture, the NANA product is difficult to separate from the excess pyruvate required to achieve this. [Pg.33]

As an alternative to chemical epimerization, NAG epimerase may be used to maintain a constant NAM NAG ratio in a one-pot reaction with pyruvate and NANA aldolase. The epimerase is itself inhibited by pymvate, which must, therefore, be added continuously or via aliquots to the reaction. In a refined version of this reaction at laboratory scale, Kragl et al produced NANA by a continuous process, using a membrane reactor to contain both enzymes in solution. [Pg.34]

Of the known classes of aldolase, DERA (statin side chain) and pyruvate aldolases (sialic acids) have been shown to be of particular value in API production as they use readily accessible substrates. Glycine-dependent aldolases are another valuable class that allow access to p-hydroxy amino acid derivatives. In contrast, dihydroxy acetone phosphate (DHAP) aldolases, which also access two stereogenic centres simultaneously,... [Pg.53]


See other pages where Aldolase pyruvate is mentioned: [Pg.328]    [Pg.328]    [Pg.457]    [Pg.630]    [Pg.747]    [Pg.94]    [Pg.100]    [Pg.592]    [Pg.46]    [Pg.276]    [Pg.278]    [Pg.279]    [Pg.281]    [Pg.281]    [Pg.282]    [Pg.283]    [Pg.284]    [Pg.168]    [Pg.84]    [Pg.132]    [Pg.238]    [Pg.7]    [Pg.702]    [Pg.358]    [Pg.197]    [Pg.34]   
See also in sourсe #XX -- [ Pg.276 ]

See also in sourсe #XX -- [ Pg.242 , Pg.243 , Pg.244 , Pg.245 , Pg.246 ]




SEARCH



Aldolases pyruvate-dependent

Enzymatic synthesis pyruvate aldolases

Other Pyruvate-Dependent Aldolases

Pyruvate aldolases

Pyruvate aldolases

Pyruvate-dependent aldolases aldolase

Pyruvate-dependent aldolases reactions catalyzed

Pyruvate-dependent aldolases structure

Related Pyruvate Aldolases

Structure-Guided Pyruvate Aldolase Modification

© 2024 chempedia.info