Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes ozonolysis

The steroeselective synthesis of (2s, 3s) norstatine derivatives is carried out through aldehydes ozonolysis in the presence of lithium methoxy-allene [82],... [Pg.136]

The final step can involve introduction of the amino group or of the carbonyl group. o-Nitrobenzyl aldehydes and ketones are useful intermediates which undergo cyclization and aromatization upon reduction. The carbonyl group can also be introduced by oxidation of alcohols or alkenes or by ozonolysis. There are also examples of preparing indoles from o-aminophcnyl-acetonitriles by partial reduction of the cyano group. [Pg.14]

As mentioned previously, aldehydes can be prepared by Stephen s method of reduction of nitriles by stannous chloride (37, 91). Polaro-graphic reduction of thiazolecarboxylic acids and their derivatives gives lower yields of aldehydes (58). Ozonolysis of styrylthiazoles, for example, 2-styryl-4-methylthiazole, followed by catalytic reduction gives aldehyde with 47% yield of crude product (30). [Pg.533]

Ozonolysis has both synthetic and analytical applications m organic chemistry In synthesis ozonolysis of alkenes provides a method for the preparation of aldehydes and ketones... [Pg.263]

Alkenes are cleaved to carbonyl compounds by ozonolysis This reaction IS useful both for synthesis (preparation of aldehydes ketones or car boxyhc acids) and analysis When applied to analysis the carbonyl com pounds are isolated and identified allowing the substituents attached to the double bond to be deduced... [Pg.274]

A certain compound of molecular formula Ci9H3g was isolated from fish oil and from plank ton On hydrogenation it gave 2 6 10 14 tetramethylpentadecane Ozonolysis gave (CH3)2C=0 and a 16 carbon aldehyde What is the structure of the natural product" What is the structure of the aldehyde" ... [Pg.280]

The dipolar ion can react in several ways according to the solvent and the stmcture of the olefin. In inert solvents, if the carbonyl compound is highly reactive (eg, an aldehyde), the dipolar ion can be added to the carbonyl fragment to give the normal ozonide or 1,2,4-trioxolane (7) for example, 1,1-and 1,2-dialkylethylenes react in this manner. Tri- or tetraalkyl-substituted olefins produce a smaH, if any, yield of an ozonide when the ozonolysis is... [Pg.493]

Steric hindrance can cause polymerization to predominate even if (5) is an aldehyde. With increasing bulk of substituents on one side of a double bond, epoxidation can compete with ozonolysis. [Pg.494]

The most recent, and probably most elegant, process for the asymmetric synthesis of (+)-estrone appHes a tandem Claisen rearrangement and intramolecular ene-reaction (Eig. 23). StereochemicaHy pure (185) is synthesized from (2R)-l,2-0-isopropyhdene-3-butanone in an overall yield of 86% in four chemical steps. Heating a toluene solution of (185), enol ether (187), and 2,6-dimethylphenol to 180°C in a sealed tube for 60 h produces (190) in 76% yield after purification. Ozonolysis of (190) followed by base-catalyzed epimerization of the C8a-hydrogen to a C8P-hydrogen (again similar to conversion of (175) to (176)) produces (184) in 46% yield from (190). Aldehyde (184) was converted to 9,11-dehydroestrone methyl ether (177) as discussed above. The overall yield of 9,11-dehydroestrone methyl ether (177) was 17% in five steps from 6-methoxy-l-tetralone (186) and (185) (201). [Pg.436]

Examples are given of common operations such as absorption of ammonia to make fertihzers and of carbon dioxide to make soda ash. Also of recoveiy of phosphine from offgases of phosphorous plants recoveiy of HE oxidation, halogenation, and hydrogenation of various organics hydration of olefins to alcohols oxo reaction for higher aldehydes and alcohols ozonolysis of oleic acid absorption of carbon monoxide to make sodium formate alkylation of acetic acid with isobutylene to make teti-h ty acetate, absorption of olefins to make various products HCl and HBr plus higher alcohols to make alkyl hahdes and so on. [Pg.2110]

Aldehyde (139a) was synthesized independently from (141) by ozonolysis followed by ring closure of the seco-keto-aldehyde (140). [Pg.400]

In general however, ozonolysis is of limited synthetic importance. For quite some time ozonolysis has been an important tool for structure elucidation in organic chemistry, but has lost its importance when spectroscopic methods were fully developed for that purpose. The identification of the aldehydes and/or ketones obtained by ozonolysis of unsaturated compounds allowed for conclusions about the structure of the starting material, but has practically lost its importance since then. [Pg.219]

Low -molecular-weight ozonides are explosive and are theretore not isolated. Instead, the ozonide is immediately treated with a reducing agent such as zinc metal in acetic acid to convert it to carbonyl compounds. The net result of the ozonolysis/reduction sequence is that the C=C bond is cleaved and oxygen becomes doubly bonded to each of the original alkene carbons. If an alkene with a letrasubstituted double bond is ozonized, two ketone fragments result if an alkene with a trisubstituted double bond is ozonized, one ketone and one aldehyde result and so on. [Pg.237]

Alkenes with at least one vinjdic hydrogen undergo oxidative cleavage when treated with ozone, yielding aldehydes (Section 7.9). If the ozonolysis reaction is carried out on a cyclic alkene, a dicarbonyl compound results. [Pg.698]

Besides simple alkyl-substituted sulfoxides, (a-chloroalkyl)sulfoxides have been used as reagents for diastereoselective addition reactions. Thus, a synthesis of enantiomerically pure 2-hydroxy carboxylates is based on the addition of (-)-l-[(l-chlorobutyl)sulfinyl]-4-methyl-benzene (10) to aldehydes433. The sulfoxide, optically pure with respect to the sulfoxide chirality but a mixture of diastereomers with respect to the a-sulfinyl carbon, can be readily deprotonated at — 55 °C. Subsequent addition to aldehydes afforded a mixture of the diastereomers 11A and 11B. Although the diastereoselectivity of the addition reaction is very low, the diastereomers are easily separated by flash chromatography. Thermal elimination of the sulfinyl group in refluxing xylene cleanly afforded the vinyl chlorides 12 A/12B in high chemical yield as a mixture of E- and Z-isomers. After ozonolysis in ethanol, followed by reductive workup, enantiomerically pure ethyl a-hydroxycarboxylates were obtained. [Pg.138]

The aldehyde or ketone functionalities in the Michael adducts are restored by ozonolysis of the hydrazone moiety resulting in am/-3,4-disubstituted-5-oxoalkanoates 1. [Pg.960]

An excellent synthetic method for asymmetric C—C-bond formation which gives consistently high enantioselectivity has been developed using azaenolates based on chiral hydrazones. (S)-or (/ )-2-(methoxymethyl)-1 -pyrrolidinamine (SAMP or RAMP) are chiral hydrazines, easily prepared from proline, which on reaction with various aldehydes and ketones yield optically active hydrazones. After the asymmetric 1,4-addition to a Michael acceptor, the chiral auxiliary is removed by ozonolysis to restore the ketone or aldehyde functionality. The enolates are normally prepared by deprotonation with lithium diisopropylamide. [Pg.975]

Another interesting biooxygenation reaction with alkenes, recently identified, represents an enzymatic equivalent to an ozonolysis. While only studied on nonchiral molecules, so far, this cleavage of an alkene into two aldehydes under scores the diversity of functional group interconversions possible by enzymatic processes [121,122]. [Pg.243]

The obvious Vfittig disconnection gives stabilised ylid (5fi) and keto-aldehyde (57). We have used many such long-chain dicarbonyl compounds in this Chapter and they are mostly produced from available alkenes by oxidative cleavage (e.g. ozonolysis). In this case, cyclic alkene (58) is the right starting material, and this can be made from alcohol (59) by elimination,... [Pg.162]

Since ketone (5) is available (Tl) and the extra methyl groups will be removed in the ozonolysis, this was the starting material for the published synthesis. Reductive work-up (zinc was used) for the ozonolysis is necessary to preserve the aldehyde. [Pg.304]

In the published synthesis the ozonolysis is performed on the protected product (9) and aldehyde (10) isolated before oxidation, hydrolysis and decarboxylation give aspartic acid. [Pg.305]

The synthetic P-o-glucopyranoside 30 was converted to the cyanoglucoside rho-diocyanoside A (38a), which was isolated from the underground part of Rhodiola quadrifida (Pall.) Fisch. et Mey. (Crassulaceae) and found to show antiallergic activity in a passive cutaneous anaphylaxis test in rat. Acetylation of 30 gave an acetate (98% yield) which was subjected to ozonolysis to afford the aldehyde 39. The Horner-Emmons reaction of 39 using diethyl (l-cyanoethyl)phosphonate furnished (Z)-40a (32% yield from 30) and ( )-40b (10% yield from 30). The physical... [Pg.259]

Ozonolysis of polyisoprene formed by free radical polymerization yields much levulinic aldehyde and acid and only very small amounts... [Pg.243]


See other pages where Aldehydes ozonolysis is mentioned: [Pg.140]    [Pg.152]    [Pg.115]    [Pg.140]    [Pg.152]    [Pg.115]    [Pg.87]    [Pg.322]    [Pg.99]    [Pg.436]    [Pg.62]    [Pg.91]    [Pg.288]    [Pg.618]    [Pg.383]    [Pg.112]    [Pg.114]    [Pg.299]    [Pg.1522]    [Pg.1525]    [Pg.1526]    [Pg.171]    [Pg.185]    [Pg.243]    [Pg.17]    [Pg.55]   
See also in sourсe #XX -- [ Pg.218 ]

See also in sourсe #XX -- [ Pg.218 ]




SEARCH



Aldehydes by ozonolysis

Aldehydes by ozonolysis of alkene

Aldehydes formation from ozonolysis

Aldehydes from ozonolysis

Aldehydes ozonolysis of alkenes

Ozonolysis

© 2024 chempedia.info