Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes acids, degradation with

Aldehydes from a-hydroxycarboxylic acids Degradation with loss of 1 G-atom... [Pg.82]

The reaction of carboxylic acids, aldehydes or ketones with hydrazoic acid in the presence of a strong acid is known as the Schmidt reaction A common application is the conversion of a carboxylic acid 1 into an amine 2 with concomitant chain degradation by one carbon atom. The reaction of hydrazoic acid with a ketone 3 does not lead to chain degradation, but rather to formation of an amide 4 by formal insertion of an NH-group. [Pg.251]

Much of the chemistry of monosaccharides is the familiar chemistry of alcohols and aldehydes/ketones. Thus, the hydroxyl groups of carbohydrates form esters and ethers. The carbonyl group of a monosaccharide can be reduced with NaBH4 to form an alditol, oxidized with aqueous Br2 to form an aldonic acid, oxidized with HNO3 to form an aldaric acid, oxidized enzymatically to form a uronic acid, or treated with an alcohol in the presence of acid to form a glycoside. Monosaccharides can also be chain-lengthened by the multistep Kiliani-Fischer synthesis and can be chain-shortened by the Wohl degradation. [Pg.1007]

N-Acetylneuraminic acid aldolase (or sialic acid aldolase, NeuA EC 4.1.3.3) catalyzes the reversible addition of pyruvate (2) to N-acetyl-D-mannosamine (ManNAc (1)) in the degradation of the parent sialic acid (3) (Figure 10.4). The NeuA lyases found in both bacteria and animals are type I enzymes that form a Schiff base/enamine intermediate with pyruvate and promote a si-face attack to the aldehyde carbonyl group with formation of a (4S) configured stereocenter. The enzyme is commercially available and it has a broad pH optimum around 7.5 and useful stability in solution at ambient temperature [36]. [Pg.278]

As mentioned earlier, in the Ruhrchemie-Rhone Poulenc process for propene hydroformylation the pH of the aqueous phase is kept between 5 and 6. This seems to be an optimum in order to avoid acid- and base-catalyzed side reactions of aldehydes and degradation of TPPTS. Nevertheless, it has been observed in this [93] and in many other cases [38,94-96,104,128,131] that the [RhH(CO)(P)3] (P = water-soluble phosphine) catalysts work more actively at higher pH. This is unusual for a reaction in which (seemingly) no charged species are involved. For example, in 1-octene hydroformylation with [ RhCl(COD) 2] + TPPTS catalyst in a biphasic medium the rates increased by two- to five-fold when the pH was changed from 7 to 10 [93,96]. In the same detailed kinetic studies [93,96] it was also established that the rate of 1-octene hydroformylation was a significantly different function of reaction parameters such as catalyst concentration, CO and hydrogen pressure at pH 7 than at pH 10. [Pg.120]

Lysine is not only a constituent of proteins. It can also be trimethylated and converted to carnitine (p. 944). In mammals some specific lysyl side chains of proteins undergo N-trimethylation and proteolytic degradation with release of free trimethyllysine (Eq. 24-30) 278/279 The free trimethyllysine then undergoes hydroxylation by a 2-oxoglutarate-Fe2+-ascorbate-dependent hydroxylase (Eq. 18-51) to form P-hydroxytrimethyllysine, which is cleaved by a PLP-dependent enzyme (Chapter 14). The resulting aldehyde is oxidized to the carboxylic acid and is converted by a second 2-oxoglutarate-Fe2+-ascorbate-dependent hydroxylase to carnitine (Eq. 24-30 see also Eq. 18-50). [Pg.1386]

Aldoses can be degraded by the following two reactions. First the aldehyde is oxidized with bromine water to form a carboxylic acid. Next the carboxylic acid is decarboxy-lated with hydrogen peroxide and ferric sulfate leaving an aldehyde. The new aldose is one carbon shorter. When glucose is degraded in this manner, and the product is oxidized by dilute nitric acid, an optically active compound is formed. [Pg.124]

Organic components of polishes are widespread. Thus most products emit complex VOC mixtures that may consist of alkanes, various alcohols, acetates, C2-C4-benzenes, terpenes and derivatives of naphthalene. This is illustrated by the range of compounds emitted by a furniture polish (Figure 15.2b) and a shoe polish (Figure 15.2c). Many modern floor waxes are based on natural ingredients like alkyd resins. On oxidative degradation of unsaturated fatty acids, volatile aliphatic aldehydes (C5-C11) with unpleasant smell (Ruth, 1986) are formed and the emission rates may remain at high levels over months and even years (Salthammer, 1999). [Pg.361]

Finally, heating of amino acids can produce volatiles Including aldehydes, amines and hydrogen sulfide. One minor, but Important, flavor generating pathway Involves the Strecker degradation of an amino acid as shown in Figure 2. In this reaction, an alpha amino acid reacts with an alpha dicarbonyl at an elevated temperature to produce an aldehyde (one carbon less than the amino acid) as well as an alpha amino ketone. These products can react further to yield Important heterocyclic aroma chemicals such as pyrazines, thlazoles, and dihydrofuranones. [Pg.4]

For a number of processes, reactive distillation is not possible, as some of the reactants are destroyed or degraded in side reactions by heating them up to boiling temperature. Examples of such processes are the Knoevenagel-condensation of aldehydes or ketones with components of high CH-acidity, the production of enam-ines or carbonic acid amides, or the esterification of fatty acids with fatty alcohols to fatty esters [7]. [Pg.234]

N-methyl carbamates do not need activation to inhibit ChEs. However, at least in the case of aldicarb, inhibition increases with metabolism. Aldicarb is rapidly oxidized to the relatively stable aldicarb sulfoxide, which in turn is more slowly metabolized to aldicarb sulfone, a stronger AChE inhibitor. These products are then detoxified by conversion to oximes and nitriles, which in turn are degraded to aldehydes, acids, and alcohols. Procarbamate derivatives were... [Pg.593]

The 1,4-addition of nucleophiles to Knoevenagel products of Meldrum s acid has been widely used synthetically. The products of the addition of Grignard reagents can be degraded to yield monocarbox-ylic acids and monocarboxylic esters, respectively. Although hydrolysis of Knoevenagel products in aqueous methanol yields Meldrum s acid and the corresponding aldehyde or ketone, with a trace of hydrochloric acid in ethanol half-esters of 2-methylenemalonates are obtained. - "... [Pg.356]


See other pages where Aldehydes acids, degradation with is mentioned: [Pg.319]    [Pg.791]    [Pg.50]    [Pg.288]    [Pg.673]    [Pg.148]    [Pg.362]    [Pg.272]    [Pg.211]    [Pg.348]    [Pg.309]    [Pg.14]    [Pg.481]    [Pg.19]    [Pg.56]    [Pg.685]    [Pg.172]    [Pg.712]    [Pg.1007]    [Pg.68]    [Pg.1568]    [Pg.288]    [Pg.820]    [Pg.79]    [Pg.82]    [Pg.457]    [Pg.65]    [Pg.387]    [Pg.278]    [Pg.295]   


SEARCH



Acid degradation

Aldehydes acidity

Carboxylic acids aldehydes, degradation with

Degradation with Acids

© 2024 chempedia.info