Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols alkene hydrogenation

We have seen this situation before m the reaction of alcohols with hydrogen halides (8ection 4 11) m the acid catalyzed dehydration of alcohols (8ection 5 12) and m the conversion of alkyl halides to alkenes by the El mechanism (8ection 5 17) As m these other reactions an electronic effect specifically the stabilization of the carbocation intermediate by alkyl substituents is the decisive factor The more stable the carbo cation the faster it is formed... [Pg.342]

When applied to the synthesis of ethers the reaction is effective only with primary alcohols Elimination to form alkenes predominates with secondary and tertiary alcohols Diethyl ether is prepared on an industrial scale by heating ethanol with sulfuric acid at 140°C At higher temperatures elimination predominates and ethylene is the major product A mechanism for the formation of diethyl ether is outlined m Figure 15 3 The individual steps of this mechanism are analogous to those seen earlier Nucleophilic attack on a protonated alcohol was encountered m the reaction of primary alcohols with hydrogen halides (Section 4 12) and the nucleophilic properties of alcohols were dis cussed m the context of solvolysis reactions (Section 8 7) Both the first and the last steps are proton transfer reactions between oxygens... [Pg.637]

Peroxomonosulfuric acid oxidi2es cyanide to cyanate, chloride to chlorine, and sulfide to sulfate (60). It readily oxidi2es carboxyflc acids, alcohols, alkenes, ketones, aromatic aldehydes, phenols, and hydroquiaone (61). Peroxomonosulfuric acid hydroly2es rapidly at pH <2 to hydrogen peroxide and sulfuric acid. It is usually made and used ia the form of Caro s acid. [Pg.94]

Heteropoly acids can be synergistically combined with phase-transfer catalysis in the so-called Ishii-Venturello chemistry for oxidation reactions such as oxidation of alcohols, allyl alcohols, alkenes, alkynes, P-unsaturated acids, vic-diols, phenol, and amines with hydrogen peroxide (Mizuno et al., 1994). Recent examples include the epoxidations of alkyl undecylenates (Yadav and Satoskar, 1997) and. styrene (Yadav and Pujari, 2000). [Pg.138]

In the absence of alkene, alcohols lose hydrogen to the Ti—H202 complex to form water and ketone or aldehyde as shown in Fig. 6—IO47,49... [Pg.237]

The stereoselectivity obtained in hydrogenation of an enone can be due to the formation of an intermediate in which alkene, hydrogen, and alcohol groups bind simultaneously to the metal (Equation (5)). This kind of stereoselectivity is typical in catalytic reactions where a polar group resides near to a C=C bond. [Pg.82]

The hydrogenation activity is an added advantage of this route, since most of the hydroformylation-products are converted to the alcohols anyway. Concurrent with the hydrogenation of aldehyde to alcohol, however, hydrogenation of alkene feedstock to alkane occurs, which may be as high as 15% under certain conditions (versus 2-3% for the non-ligand-modified... [Pg.131]

In organic chemistry, reduction is defined as a reaction in which a carbon atom forms fewer bonds to oxygen, O, or more bonds to hydrogen, H. Often, a C=0 bond or C=C bond is reduced to a single bond by reduction. A reduction that transforms double C=C or C=0 bonds to single bonds may also be classified as an addition reaction. Aldehydes, ketones, and carboxylic acids can be reduced to become alcohols. Alkenes and alkynes can be reduced by the addition of H2 to become alkanes. [Pg.60]

Keywords Alcohols Alkenes Asymmetric transfer hydrogenation C-alkylation Imines Ketones W-aUcylation Oxidation Reduction Transfer hydrogenation... [Pg.77]

AUylic ethers were reduced by treatment with lithium in ethylamine to alkenes [636]. Benzyl ethers are hydrogenolyzed easily, even more readily than benzyl alcohols [637], 3,5-Bis(benzyloxy)benzyl alcohol gave 3,5-dihydroxy-benzyl alcohol on hydrogenation over palladium on carbon at room temperature and atmospheric pressure in quantitative yield [638. Hydrogenolysis of benzylic ethers can also be achieved by refluxing the ether with cyclohexene (as a source of hydrogen) in the presence of 10% palladium on carbon in the presence of aluminum chloride [639]. [Pg.82]

The presence of ether among the decomposition products depends on its stability (maximal for Me20 and minimal for Bu 20). All Al(OR)3 except the methoxide form alcohols, alkenes, traces of water, and hydrogen. [Pg.228]

Treatment of TV-methyl-4-piperidone with the Grignard reagent derived from bromobenzene gives a tertiary alcohol that can be dehydrated to an alkene. Hydrogenation of the alkene completes the synthesis. [Pg.648]

Scheme 9 Proposed mechanism and substrate scope for tandem alcohol oxidation/Wittig reaction/alkene hydrogenation sequence... Scheme 9 Proposed mechanism and substrate scope for tandem alcohol oxidation/Wittig reaction/alkene hydrogenation sequence...
This C - H activation event is reversible, and is required to achieve catalytic turnover [62], A series of alcohols, mostly secondary benzylic examples, have been oxidized using this catalyst. The catalytic activity does not match that of the Ir examples described above, but it has been used in several tandem reactions that feature both dehydrogenation and hydrogenation steps to achieve interesting transformations. One example is a tandem alcohol oxidation/Wittig reaction/alkene hydrogenation sequence (Scheme 9) [61,62],... [Pg.34]

Applications of HT-type catalysts, prepared by the above methods, have been reported in recent years for basic catalysis (polymerization of alkene oxides, aldol condensation), steam reforming of methane or naphtha, CO hydrogenation as in methanol and higher-alcohol synthesis, conversion of syngas to alkanes and alkenes, hydrogenation of nitrobenzene, oxidation reactions, and as a support for Ziegler-Natta catalysts (Table 2). [Pg.79]

Dehydration is reversible, and in most cases the equilibrium constant is not large. In fact, the reverse reaction (hydration) is a method for converting alkenes to alcohols (see Section 8-4). Dehydration can be forced to completion by removing the products from the reaction mixture as they form. The alkene boils at a lower temperature than the alcohol because the alcohol is hydrogen bonded. A carefully controlled distillation removes the alkene while leaving the alcohol in the reaction mixture. [Pg.312]

For most alkenes, hydrogenation takes place at room temperature, using hydrogen gas at atmospheric pressure. The alkene is usually dissolved in an alcohol, an alkane, or acetic acid. A small amount of platinum, palladium, or nickel catalyst is added, and the container is shaken or stirred while the reaction proceeds. Hydrogenation actually takes place at the surface of the metal, where the liquid solution of the alkene comes into contact with hydrogen and the catalyst. [Pg.355]


See other pages where Alcohols alkene hydrogenation is mentioned: [Pg.75]    [Pg.497]    [Pg.89]    [Pg.229]    [Pg.380]    [Pg.152]    [Pg.233]    [Pg.73]    [Pg.53]    [Pg.693]    [Pg.735]    [Pg.77]    [Pg.313]    [Pg.351]    [Pg.313]    [Pg.79]    [Pg.378]    [Pg.259]    [Pg.135]    [Pg.100]    [Pg.487]    [Pg.315]    [Pg.441]    [Pg.132]   


SEARCH



Alcohols hydrogen

Alcohols hydrogenation

Alkene alcohols

Alkenes hydrogenation

Tandem alcohol oxidation, alkene hydrogenation

© 2024 chempedia.info