Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aggregate compaction

The conditions and prehistory of the suspension, for example agitation which determines the structure of the floes formed (chain aggregates, compact clusters, etc.). [Pg.145]

Aggregated compact sphere, hyperbranched compact structure... [Pg.83]

On standing, concentrated suspensions reach various states (structures) that are determined by (1) Magnitude and balance of the various interaction forces, electrostatic repulsion, steric repulsion and van der Waals attraction. (2) Particle size and shape distribution. (3) Density difference between disperse phase and medium, which determines the sedimentation characteristics. (4) Conditions and prehistory of the suspension, e.g. agitation, which determines the structure of the floes formed (chain aggregates, compact clusters, etc.). (5) Presence of additives, e.g. high molecular weight polymers that may cause bridging or depletion flocculation. [Pg.226]

For this installation method, the geotextUe encasement is placed outside and around the cylindrical vibrator. Once the tip of the vibrator has reached the bearing layer, it is pulled out under vibration and filling material is dispensed at the bottom tip with pressurized air. At short intervals the vibrator is pushed down into the filling material compacting it the process is repeated until the column is completed. Aggregate compaction favors immediate activation of the circumferential... [Pg.383]

For compact, homogeneous objects in tliree dimensions, p= 3. Colloidal aggregates, however, tend to be ratlier open, fractal stmctures, witli 3. For a general introduction to fractals, see section C3.6 and [61]. [Pg.2684]

Fig. 5. Protein folding. The unfolded polypeptide chain coUapses and assembles to form simple stmctural motifs such as -sheets and a-hehces by nucleation-condensation mechanisms involving the formation of hydrogen bonds and van der Waal s interactions. Small proteins (eg, chymotrypsin inhibitor 2) attain their final (tertiary) stmcture in this way. Larger proteins and multiple protein assembhes aggregate by recognition and docking of multiple domains (eg, -barrels, a-helix bundles), often displaying positive cooperativity. Many noncovalent interactions, including hydrogen bonding, van der Waal s and electrostatic interactions, and the hydrophobic effect are exploited to create the final, compact protein assembly. Further stmctural... Fig. 5. Protein folding. The unfolded polypeptide chain coUapses and assembles to form simple stmctural motifs such as -sheets and a-hehces by nucleation-condensation mechanisms involving the formation of hydrogen bonds and van der Waal s interactions. Small proteins (eg, chymotrypsin inhibitor 2) attain their final (tertiary) stmcture in this way. Larger proteins and multiple protein assembhes aggregate by recognition and docking of multiple domains (eg, -barrels, a-helix bundles), often displaying positive cooperativity. Many noncovalent interactions, including hydrogen bonding, van der Waal s and electrostatic interactions, and the hydrophobic effect are exploited to create the final, compact protein assembly. Further stmctural...
Silica and Alumina. The manufacture of Pordand cement is predicated on the reaction of lime with siUca and alumina to form tricalcium sihcate [12168-85-3] and aluminate. However, under certain ambient conditions of compaction with sustained optimum moisture content, lime reacts very slowly to form complex mono- and dicalcium siUcates, ie, cementitious compounds (9,10). If such a moist, compact mixture of lime and siUca is subjected to steam and pressure in an autoclave, the lime—silica reaction is greatiy accelerated, and when sand and aggregate is added, materials of concrete-like hardness are produced. Limestone does not react with siUca and alumina under any circumstances, unless it is first calcined to lime, as in the case of hydrauhc lime or cement manufacture. [Pg.168]

The hot mixes are designed by using a standard laboratory compaction procedure to develop a composition reflecting estabUshed criteria for volume percent air voids, total volume percent voids between aggregate particles, flow and stabdity, or compressive strength. Tests such as the Marshall, Unconfined Compression, Hubbard-Field, Triaxial Procedure, or the Hveem stabdometer method are used (109). [Pg.372]

If aggregate is mixed with dry calcium chloride or a calcium chloride solution and then compacted, the presence of the calcium chloride draws ia moisture to biad the fine particles ia the aggregate matrix. This process leads to a well compacted, maximum deasity gravel road. This appHcatioa for calcium chloride was reviewed ia 1958 (27). More receat pubHcatioas are also available (28—30). [Pg.416]

The asymmetric unit contains one copy each of the subunits VPl, VP2, VP3, and VP4. VP4 is buried inside the shell and does not reach the surface. The arrangement of VPl, VP2, and VP3 on the surface of the capsid is shown in Figure 16.12a. These three different polypeptide chains build up the virus shell in a way that is analogous to that of the three different conformations A, C, and B of the same polypeptide chain in tomato bushy stunt virus. The viral coat assembles from 12 compact aggregates, or pen tamers, which contain five of each of the coat proteins. The contours of the outward-facing surfaces of the subunits give to each pentamer the shape of a molecular mountain the VPl subunits, which correspond to the A subunits in T = 3 plant viruses, cluster at the peak of the mountain VP2 and VP3 alternate around the foot and VP4 provides the foundation. The amino termini of the five VP3 subunits of the pentamer intertwine around the fivefold axis in the interior of the virion to form a p stmcture that stabilizes the pentamer and in addition interacts with VP4. [Pg.334]

The pioneering work on amphiphilic polyelectrolytes goes back to 1951, when Strauss et al. [25] first synthesized amphiphilic polycations by quaternization of poly(2-vinylpyridine) with n-dodecyl bromide. They revealed that the long alkyl side chains attached to partially quaternized poly(vinylpyridine)s tended to aggregate in aqueous solution so that the polymers assumed a compact conformation when the mole fraction of the hydrophobic side chains exceeded a certain critical value. Thus, Strauss et al. became the first to show experimentally the intramolecular micellation of amphiphilic polymers and the existence of a critical content of hydrophobic residues which may be compared to the critical micelle concentration of ordinary surfactants. They called such amphiphilic polyelectrolytes polysoaps [25],... [Pg.63]

Neuritic or senile plaques are extracellular protein deposits of fibrils and amorphous aggregates of P-amyloid protein.11 This formed protein is central to the pathogenesis of AD. The P-amyloid protein is present in a non-toxic, soluble form in human brains. In AD, conformational changes occur that render it insoluble and cause it to deposit into amorphous diffuse plaques associated with dystrophic neuritis.14 Over time, these deposits become compacted into plaques and the P-amyloid protein becomes fibrillar and neurotoxic. Inflammation occurs secondary to clusters of astrocytes and microglia surrounding these plaques. [Pg.515]


See other pages where Aggregate compaction is mentioned: [Pg.657]    [Pg.259]    [Pg.511]    [Pg.73]    [Pg.37]    [Pg.64]    [Pg.277]    [Pg.233]    [Pg.873]    [Pg.24]    [Pg.152]    [Pg.657]    [Pg.259]    [Pg.511]    [Pg.73]    [Pg.37]    [Pg.64]    [Pg.277]    [Pg.233]    [Pg.873]    [Pg.24]    [Pg.152]    [Pg.2685]    [Pg.2967]    [Pg.205]    [Pg.177]    [Pg.491]    [Pg.387]    [Pg.541]    [Pg.542]    [Pg.558]    [Pg.399]    [Pg.285]    [Pg.204]    [Pg.64]    [Pg.64]    [Pg.119]    [Pg.186]    [Pg.187]    [Pg.108]    [Pg.320]    [Pg.420]    [Pg.190]    [Pg.196]    [Pg.333]    [Pg.218]    [Pg.161]   


SEARCH



Aggregates, compact

Aggregates, compact

© 2024 chempedia.info