Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aerosols molecules

Other blood-tissue barriers (e.g., blood-thymus, blood-testis) are less well defined [55,56]. An air-blood barrier also has been described that affects the systemic uptake of aerosolized molecules [57]. Therapeutants that target glycoprotein adhesion molecules on endothelium might surmount the blood-brain or other tissue barriers [58]. [Pg.247]

Pailthorpe and Russel (1982) and Aninachalam et at. (1998) compared this approximation with the exact solution by Langbein for colloidal polystyrene spheres in an aqueous solution and for aerosol molecule clusters of tetrachloromethane (CCLi), respectively. In both cases the approximate approach underestimates the van-der-Waals interaction energy by approx. 10 to 20 %. Pailthorpe and Russel (1982) conclude that this deviation is comparable with the uncertainty due to inaccurate dielectric values. [Pg.98]

These fundamental equations apply to many systems involving discrete entities aerosols, molecules, and particles, even people. A full review of their derivation of these equations is to be found in Randolph and Larson (1988), who have pioneered their application to industrial crystallizers in particular. [Pg.55]

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES), it must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the plasma flame, they must be transported there as gases or finely dispersed droplets of a solution or as fine particulate matter (aerosol). The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter deals specifically with substances that are normally solids at ambient temperatures. [Pg.109]

The femperafure of fhe plasma in fhe region of observation is fypically 7000-8000 K, and all molecules confained in fhe aerosol sample are atomized. The majorify of fhe atoms are also... [Pg.66]

The DEP of numerous particle types has been studied, and many apphcations have been developed. Particles studied have included aerosols, glass, minerals, polymer molecules, hving cells, and cell organelles. Apphcations developed include filtration, orientation, sorting or separation, characterization, and levitation and materials handhng. Effects of DEP are easily exhibited, especially by large particles, and can be apphed in many useful and desirable ways. DEP effects can, however, be observed on particles ranging in size even down to the molecular level in special cases. Since thermal effects tend to disrupt DEP with molecular-sized particles, they can be controlled only under special conditions such as in molecular beams. [Pg.2010]

The secondary source of fine particles in the atmosphere is gas-to-particle conversion processes, considered to be the more important source of particles contributing to atmospheric haze. In gas-to-particle conversion, gaseous molecules become transformed to liquid or solid particles. This phase transformation can occur by three processes absortion, nucleation, and condensation. Absorption is the process by which a gas goes into solution in a liquid phase. Absorption of a specific gas is dependent on the solubility of the gas in a particular liquid, e.g., SO2 in liquid H2O droplets. Nucleation and condensation are terms associated with aerosol dynamics. [Pg.145]

Condensation is the result of collisions between a gaseous molecule and an existing aerosol droplet when supersaturation exists. Condensation occurs at much lower values of supersaturation than nucleation. Thus, when particles already exist in sufficient quantities, condensation will be the dominant process occurring to relieve the supersaturated condition of the vapor-phase material. [Pg.145]

Other lesser mechanisms that result in aerosol removal by filters are (1) gravitational settling due to the difference in mass of the aerosol and the carrying gas, (2) thermal precipitation due to the temperature gradient between a hot gas stream and the cooler filter medium which causes the particles to be bombarded more vigorously by the gas molecules on the side away from the filter element, and (3) Brownian deposition as the particles are bombarded with gas molecules that may cause enough movement to permit the aerosol to come in contact with the filter element. Browruan motion may also cause some of the particles to miss the filter element because they are moved away from it as they pass by. For practical purposes, only the three mechanisms shown in Fig. 29-1 are normally considered for removal of aerosols from a gas stream. [Pg.463]

Sulfur oxides (SO,) are compounds of sulfur and oxygen molecules. Sulfur dioxide (SO2) is the predominant form found in the lower atmosphere. It is a colorless gas that can be detected by taste and smell in the range of 1, (X)0 to 3,000 uglm. At concentrations of 10,000 uglm , it has a pungent, unpleasant odor. Sulfur dioxide dissolves readily in water present in the atmosphere to form sulfurous acid (H SOj). About 30% of the sulfur dioxide in the atmosphere is converted to sulfate aerosol (acid aerosol), which is removed through wet or dry deposition processes. Sulfur trioxide (SO3), another oxide of sulfur, is either emitted directly into the atmosphere or produced from sulfur dioxide and is readily converted to sulfuric acid (H2SO4). [Pg.38]

Secondary Aerosols aerosol formed by the interaction of two or more gas molecules and/or primary aerosols. [Pg.546]

In a few cases extensive cleavage of the substrate molecule occurs The case documented [JS] involves beta cleavage of tetramethylorthocarbonate and tri-methylorthoacetate The mechanism of this reaction involves the formation of a radical which can form a more stable radical by eliminating a stable molecule by beta cleavage Interestingly tetramethylorthocarbonate seems to suffer less cleav age by the LTG method [9] Examples of beta cleavage during direct fluorination are shown in equahons 6-9, where AF is aerosol direct fluorination procedure... [Pg.108]

Primary alkyl chlorides are fairly stable to fluorine displacement. When fluorinated, 1-chloropropane is converted to 1-chloroheptafluoropropane and 1-chloto-2-methylbutane produces 39% l-chlorononafluoro-2-methylbutane and 19% perfluoro-2-methylbutane. Secondary and tertiary alkyl chlorides can undergo 1,2-chlorine shifts to afford perfluonnated primary alkyl chlorides 2-Chloro-2-methylpropane gives l-chlorononafluoro-2-methylpropane, and three products are obtained by the fluorination of 3-chloropentane [7] (equation 1). Aerosol fluorina-tion of dichloromethane produces dichlorodifluoromethane which is isolated in 98% purity [4 (equation 2). If the molecule contains only carbon and halogens, the picture is different. Molecular beam analysis has shown that the reaction of fluorine with carbon tetrachlonde, lodotrichloromethane, or bromotrichloromethane proceeds first by abstraction of halogen to form a trichloromethyl radical [5]... [Pg.173]

A non-uegligible fraction of the solar radiation incident on the earth is lost by reflection from the top of the atmosphere and tops of clouds back into outer space. For the radiation penetrating the earth s atmosphere, some of the incident energy is lost due to scattering or absorption by air molecules, clouds, dust and aerosols. The radiation that reaches the earth s surface... [Pg.1051]

In the past few years, a range of solvation dynamics experiments have been demonstrated for reverse micellar systems. Reverse micelles form when a polar solvent is sequestered by surfactant molecules in a continuous nonpolar solvent. The interaction of the surfactant polar headgroups with the polar solvent can result in the formation of a well-defined solvent pool. Many different kinds of surfactants have been used to form reverse micelles. However, the structure and dynamics of reverse micelles created with Aerosol-OT (AOT) have been most frequently studied. AOT reverse micelles are monodisperse, spherical water droplets [32]. The micellar size is directly related to the water volume-to-surfactant surface area ratio defined as the molar ratio of water to AOT,... [Pg.411]

For non-volatile sample molecules, other ionisation methods must be used, namely desorption/ionisation (DI) and nebulisation ionisation methods. In DI, the unifying aspect is the rapid addition of energy into a condensed-phase sample, with subsequent generation and release of ions into the mass analyser. In El and Cl, the processes of volatilisation and ionisation are distinct and separable in DI, they are intimately associated. In nebulisation ionisation, such as ESP or TSP, an aerosol spray is used at some stage to separate sample molecules and/or ions from the solvent liquid that carries them into the source of the mass spectrometer. Less volatile but thermally stable compounds can be thermally vaporised in the direct inlet probe (DIP) situated close to the ionising molecular beam. This DIP is standard equipment on most instruments an El spectrum results. Techniques that extend the utility of mass spectrometry to the least volatile and more labile organic molecules include FD, EHD, surface ionisation (SIMS, FAB) and matrix-assisted laser desorption (MALD) as the last... [Pg.359]


See other pages where Aerosols molecules is mentioned: [Pg.407]    [Pg.407]    [Pg.92]    [Pg.178]    [Pg.179]    [Pg.35]    [Pg.108]    [Pg.284]    [Pg.291]    [Pg.380]    [Pg.206]    [Pg.495]    [Pg.114]    [Pg.318]    [Pg.369]    [Pg.2173]    [Pg.2173]    [Pg.464]    [Pg.138]    [Pg.246]    [Pg.42]    [Pg.104]    [Pg.104]    [Pg.1224]    [Pg.435]    [Pg.210]    [Pg.98]    [Pg.589]    [Pg.64]    [Pg.278]    [Pg.32]    [Pg.361]    [Pg.384]    [Pg.502]    [Pg.609]   


SEARCH



© 2024 chempedia.info