Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption Nonideal

T 0 examine the model performance, Martinez and Basmadjian used the following experimental data in their study (1) the pure component and binary gas mixtures of hydrocarbon on activated carbon and on silica gel [85-881 (2) hydrocarbons and COt on zeolite [11] (3) propane, CO2, and H2S and their binary mixtures on H-mordenite [30]. The adsorption nonideality of the binary systems increases from mild (group 1) to high (group 3), and the model performance is shown to be satisfactory for each group of data. [Pg.428]

Some further details are the following. Film nonideality may be allowed for [192]. There may be a chemical activation barrier to the transfer step from monolayer to subsurface solution and hence also for monolayer formation by adsorption from solution [294-296]. Dissolving rates may be determined with the use of the radioactive labeling technique of Section III-6A, although precautions are necessary [297]. [Pg.150]

Because of the relatively strong adsorption bond supposed to be present in chemisorption, the fundamental adsorption model has been that of Langmuir (as opposed to that of a two-dimensional nonideal gas). The Langmuir model is therefore basic to the present discussion, but for economy in presentation, the reader is referred to Section XVII-3 as prerequisite material. However, the Langmuir equation (Eq. XVlI-5) as such,... [Pg.698]

The matter of surface mobility has come up at several points in the preceding material. The subject has been a source of confusion—see Ref. 112. Actually, two kinds of concepts seem to have been invoked. The first is that invoked in the discussion of physical adsorption, which has to do with whether the adsorbate can move on the surface so freely that its state is essentially that of a two-dimensional nonideal gas. For an adsorbate to be mobile in this sense, surface barriers must be small compared to kT. This type of mobile adsorbed layer seems unlikely to be involved in chemisorption. [Pg.709]

Electrostatic and adsorption effects conspire to make aqueous GPC more likely to be nonideal than organic solvent GPC. Thus, universal calibration is often not obeyed in aqueous systems. Elence, it is much more critical that the standard chosen for calibration share with the polymer being analyzed chemical characteristics that affect these interactions. Because standards that meet this criterion are often not available, it is prudent to include in each analysis set a sample of a secondary standard of the same composition and molecular weight as the sample. Thus, changes in the chromatography of the analyte relative to the standards will be detected. [Pg.557]

Metal/molten salt interfaces have been studied mainly by electrocapillary833-838 and differential capacitance839-841 methods. Sometimes the estance method has been used.842 Electrocapillary and impedance measurements in molten salts are complicated by nonideal polarizability of metals, as well as wetting of the glass capillary by liquid metals. The capacitance data for liquid and solid electrodes in contact with molten salt show a well-defined minimum in C,E curves and usually have a symmetrical parabolic form.8 10,839-841 Sometimes inflections or steps associated with adsorption processes arise, whose nature, however, is unclear.8,10 A minimum in the C,E curve lies at potentials close to the electrocapillary maximum, but some difference is observed, which is associated with errors in comparing reference electrode (usually Pb/2.5% PbCl2 + LiCl + KC1)840 potential values used in different studies.8,10 It should be noted that any comparison of experimental data in aqueous electrolytes and in molten salts is somewhat questionable. [Pg.147]

Table 3. Representative affinity constants for the binding of metal to transport sites or whole cells/organisms. Ionic strengths and pH values are given for the conditional constants. In the column Comments , information on the method of determination (Km = Michaelis-Menten constant WC = whole-cell titrations) the type of constant (CC = conditional constant IC = intrinsic constant) and special conditions (Cl = competitive inhibitors NICA = nonideal competitive adsorption) are given... Table 3. Representative affinity constants for the binding of metal to transport sites or whole cells/organisms. Ionic strengths and pH values are given for the conditional constants. In the column Comments , information on the method of determination (Km = Michaelis-Menten constant WC = whole-cell titrations) the type of constant (CC = conditional constant IC = intrinsic constant) and special conditions (Cl = competitive inhibitors NICA = nonideal competitive adsorption) are given...
Mixture phase equilibrium calculations, types of, 24 680-681 Mixture-process design type, 8 399 commercial experimental design software compared, 8 398t Mixtures. See also Multicomponent mixtures Nonideal liquid mixtures acetylene containing, 2 186 adsorption, 2 593-594 adsorption isotherm models,... [Pg.592]

Using this approach, a model can be developed by considering the chemical potentials of the individual surfactant components. Here, we consider only the region where the adsorbed monolayer is "saturated" with surfactant (for example, at or above the cmc) and where no "bulk-like" water is present at the interface. Under these conditions the sum of the surface mole fractions of surfactant is assumed to equal unity. This approach diverges from standard treatments of adsorption at interfaces (see ref 28) in that the solvent is not explicitly Included in the treatment. While the "residual" solvent at the interface can clearly effect the surface free energy of the system, we now consider these effects to be accounted for in the standard chemical potentials at the surface and in the nonideal net interaction parameter in the mixed pseudo-phase. [Pg.104]

Some additional complexity arises from the possibility of different adsorption sites and the presence of pores, which reflect in nonideal adsorption isotherms and mass-transfer problems. The mass transport can be relatively slow in pores and interparticle spaces [13], as it is the case of P25, for which, in suspension, there are particles ranging from 0.2 to 2 p,m, formed by 30-nrn-sizcd primary particles. In such spaces, the diffusion coefficient is comparable to liquid diffusion in zeolites. [Pg.213]

One of the most important things to bear in mind in studying van der Waals forces is that this topic has ramifications that extend far beyond our discussion here. Van der Waals interactions, for example, contribute to the nonideality of gases and, closer to home, gas adsorption. We also see how these forces are related to surface tension, thereby connecting this material with the contents of Chapter 6 (see Vignette X below). These connections also imply that certain macroscopic properties and measurements can be used to determine the strength of van der Waals forces between macroscopic objects. We elaborate on these ideas through illustrative examples in this chapter. [Pg.462]

In reality, additional sources of zone broadening include the finite width of the injected band (Equation 23-32), a parabolic flow profile from heating inside the capillary, adsorption of solute on the capillary wall (which acts as a stationary phase), the finite length of the detection zone, and mobility mismatch of solute and buffer ions that leads to nonideal elec-... [Pg.609]

Gas Separation by Adsorption Processes Ralph T. Yang Heterogeneous Reactor Design Hong H. Lee Molecular Thermodynamics of Nonideal Fluids Lloyd L. Lee Phase Equilibria in Chemical Engineering Stanley M. Walas Transport Processes in Chemically Reacting Flow Systems Darnel E. Rosner... [Pg.828]

A major focus of researchers creating planar CE devices is speed of analysis, in part so that the devices can be used as chemical sensors and circumvent the severe selectivity and lifetime requirements of conventional chemical sensors. To increase the speed of analysis, shorter capillaries should be used, in combination with higher electric field strengths. Optimum efficiency depends on minimization of all unavoidable sources of band broadening, in addition to the elimination of nonideal effects such as Joule heating and adsorption on capillary walls. Therefore, work to understand the contributions which limit the efficiency of the separation is continuing. [Pg.269]

Another contribution to variations of intrinsic activity is the different number of defects and amount of disorder in the metallic Cu phase. This disorder can manifest itself in the form of lattice strain detectable, for example, by line profile analysis of X-ray diffraction (XRD) peaks [73], 63Cu nuclear magnetic resonance lines [74], or as an increased disorder parameter (Debye-Waller factor) derived from extended X-ray absorption fine structure spectroscopy [75], Strained copper has been shown theoretically [76] and experimentally [77] to have different adsorptive properties compared to unstrained surfaces. Strain (i.e. local variation in the lattice parameter) is known to shift the center of the d-band and alter the interactions of metal surface and absorbate [78]. The origin of strain and defects in Cu/ZnO is probably related to the crystallization of kinetically trapped nonideal Cu in close interfacial contact to the oxide during catalyst activation at mild conditions. A correlation of the concentration of planar defects in the Cu particles with the catalytic activity in methanol synthesis was observed in a series of industrial Cu/Zn0/Al203 catalysts by Kasatkin et al. [57]. Planar defects like stacking faults and twin boundaries can also be observed by HRTEM and are marked with arrows in Figure 5.3.8C [58],... [Pg.428]

At the temperatures normally used for physical adsorption, the correction for the nonideality of real gases generally amounts to several percent. It can be reasonably taken into account by using the first two terms of the virial equation ... [Pg.89]

Benedetti, M.F. et al., Metal ion binding to humic substances Application of the nonideal competitive adsorption model, Environ. Sci. Technol., 29, 446, 1995. [Pg.149]

The main problem in the determination of association rates at the gas-liquid interface is the interplay of the mass transport effects and the biospecific sorption process. The experimental studies show that both effects are involved in the binding of antigen to the antibody attached to a surface. The variations of the value of the apparent adsorption rate constant with various experimental conditions reveal the importance of the nonideal effects in such experiments. To determine the effective rate of interaction, it is important both to minimize the diffusion resistances and to estimate this contribution by increasing the amount of information. Studies with varying flow rates, particle sizes, ligand densities. [Pg.369]


See other pages where Adsorption Nonideal is mentioned: [Pg.285]    [Pg.287]    [Pg.107]    [Pg.545]    [Pg.377]    [Pg.30]    [Pg.159]    [Pg.234]    [Pg.31]    [Pg.20]    [Pg.332]    [Pg.337]    [Pg.446]    [Pg.533]    [Pg.605]    [Pg.155]    [Pg.177]    [Pg.104]    [Pg.395]    [Pg.78]    [Pg.111]    [Pg.179]    [Pg.73]    [Pg.85]   
See also in sourсe #XX -- [ Pg.253 , Pg.254 ]




SEARCH



Nonideal

Nonidealities

Nonideality

© 2024 chempedia.info