Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption electrode surface properties

The capacitance is a readily measured interfacial property and it gives qualitative information on the adsorption of species at the electrode surface. Since the surface charge density, q, is a function of the potential and of coverage, the measured capacitance may be expressed as the sum of a true (high frequency) capacitance and an adsorption pseudocapacitance, i.e. q f(E,6) and hence... [Pg.167]

In 1975, the fabrication of a chiral electrode by permanent attachment of amino acid residues to pendant groups on a graphite surface was reported At the same time, stimulated by the development of bonded phases on silica and aluminia surfaces the first example of derivatized metal surfaces for use as chemically modified electrodes was presented. A silanization technique was used for covalently binding redox species to hydroxy groups of SnOj or Pt surfaces. Before that time, some successful attemps to create electrode surfaces with deliberate chemical properties made use of specific adsorption techniques... [Pg.51]

A bifunctional catalyst should be able to activate two different reaction steps (methanol and water adsorption and surface reaction between adsorbed species), and so active sites with different properties are necessary. As an example, investigations of possibihty of enhancing activity with regard to methanol electro-oxidation with Pt-Ru-based electrodes are of great interest with regard to improving the electrical efficiency of DMFCs. Several approaches have been considered the effect of Pt-Ru... [Pg.346]

Most earlier papers dealt with the mercury electrode because of its unique and convenient features, such as surface cleanness, smoothness, isotropic surface properties, and wide range of ideal polarizability. These properties are gener y uncharacteristic of solid metal electrodes, so the results of the sohd met electrolyte interface studies are not as explicit as they are for mercury and are often more controversial. This has been shown by Bockris and Jeng, who studied adsorption of 19 different organic compounds on polycrystaUine platinum electrodes in 0.0 IM HCl solution using a radiotracer method, eUipsometry, and Fourier Transform Infrared Spectroscopy. The authors have determined and discussed adsorption isotherms and the kinetics of adsorption of the studied compounds. Their results were later critically reviewed by Wieckowski. ... [Pg.16]

The SHG surface spectroscopy is another method useful in the studies on halide adsorption. ApplicabiKty of the SHG spectroscopy method to Au surface properties has been discovered by Pettinger, Kolb, and coworkers [74, 75]. It has also been shown that reconstruction of Au(lll) and Au(lOO) electrodes remarkably affects SHG anisotropy [74]. For this reason, an interference second-harmonic generation anisotropy (ISHGA)... [Pg.850]

Preparation As compared to single-crystal Ag surfaces, the preparation of pc-Ag electrode may seem to be a relatively simple task. However, a pc-Ag surface, which ensures reproducibility and stabiKty, also requires a special procedure. Ardizzone et al. [2] have described a method for the preparation of highly controlled pc-Ag electrode surface (characterized by electrochemical techniques and scanning electron microscopy (SEM)). Such electrodes, oriented toward elec-trocatalytic properties, were successfully tested in hahde adsorption experiments, using parallelly, single-crystal and conventional pc-Ag rods as references. [Pg.915]

It has been known that adsorption kinetics and/or thermodynamics of proteins depend on the electric or electrochemical properties of solid supports on which the proteins are adsorbed. This has led us to elucidate the effects of electrode potential on the adsorption behavior of avidin on the electrode surface. For this purpose, the electrode potential of a Pt electrode was varied systematically in the range of -0.5-+2.0 V in an avidin solution (pH 7.4). Although the data was somewhat scattered, a general trend was observed that the adsorption of avidin is suppressed by the application of a positive potential (+1.0-+2.0 V). This may be originating from the fact that avidin is a basic protein and has net positive charges in the solution of neutral pH. In the potential range tested, no significant acceleration in the adsorption was induced. [Pg.151]

Cations and anions with a strong solvation shell retain their solvation shell and thus interact with the electrode surface only through electrostatic forces. Since the interaction is exclusively electrostatic, the amount of these ions at the interface is defined by the electrostatic bias between the sample and the counter electrodes and independent from the chemical properties of the electrode surface non-specific adsorption. Considering the size effect of their hydration shell, these ions are able to approach the electrode to a distance limited by the size of the solvation shell of the ion. The center of these ions at a distance of closest approach defined by the size of the solvation shell is called the outer Helmholtz layer. The electrode surface and the outer Helmholtz layer have charges of equal magnitude but opposite sign, resulting in the formation of an equivalent of a plate condenser on a scale of a molecular layer. Helmholtz proposed such a plate condenser on such a molecular scale for the first time in the middle of the nineteenth century. [Pg.405]

Fig. 6.94. Comparison of adsorption properties of different electrode surfaces. Bisulfate adsorption as a function of electrode potential on different platinum planes (110), (111), (100) and on polycrystalline platinum. Data obtained by the radiotracer technique. (Re-printed from Y.-E. Sung, A. Thomas, M. Gamboa-Aldeco, K. Franaszczuk and A. Wieckowski, J. Electroanal. Chem. 378 131, copyright 1994, Figs. 14 and 15, with permission from Elsevier Science.)... Fig. 6.94. Comparison of adsorption properties of different electrode surfaces. Bisulfate adsorption as a function of electrode potential on different platinum planes (110), (111), (100) and on polycrystalline platinum. Data obtained by the radiotracer technique. (Re-printed from Y.-E. Sung, A. Thomas, M. Gamboa-Aldeco, K. Franaszczuk and A. Wieckowski, J. Electroanal. Chem. 378 131, copyright 1994, Figs. 14 and 15, with permission from Elsevier Science.)...
While considering trends in further investigations, one has to pay special attention to the effect of electroreflection. So far, this effect has been used to obtain information on the structure of the near-the-surface region of a semiconductor, but the electroreflection method makes it possible, in principle, to study electrode reactions, adsorption, and the properties of thin surface layers. Let us note in this respect an important role of objects with semiconducting properties for electrochemistry and photoelectrochemistry as a whole. Here we mean oxide and other films, polylayers of adsorbed organic substances, and other materials on the surface of metallic electrodes. Anomalies in the electrochemical behavior of such systems are frequently explained by their semiconductor nature. Yet, there is a barrier between electrochemistry and photoelectrochemistry of crystalline semiconductors with electronic conductivity, on the one hand, and electrochemistry of oxide films, which usually are amorphous and have appreciable ionic conductivity, on the other hand. To overcome this barrier is the task of further investigations. [Pg.324]


See other pages where Adsorption electrode surface properties is mentioned: [Pg.142]    [Pg.212]    [Pg.1949]    [Pg.77]    [Pg.187]    [Pg.242]    [Pg.68]    [Pg.559]    [Pg.178]    [Pg.440]    [Pg.467]    [Pg.498]    [Pg.140]    [Pg.146]    [Pg.174]    [Pg.263]    [Pg.488]    [Pg.501]    [Pg.561]    [Pg.55]    [Pg.202]    [Pg.95]    [Pg.13]    [Pg.75]    [Pg.187]    [Pg.26]    [Pg.29]    [Pg.438]    [Pg.138]    [Pg.769]    [Pg.920]    [Pg.940]    [Pg.973]    [Pg.979]    [Pg.117]    [Pg.309]    [Pg.423]    [Pg.363]    [Pg.178]    [Pg.298]    [Pg.136]   
See also in sourсe #XX -- [ Pg.240 ]




SEARCH



Adsorption properties

Electrode surface

Electrode surfaces properties

Electrodes, adsorption

© 2024 chempedia.info