Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorbents aluminosilicates

A tremendous variety of structures is known, and some of the three-dimensional network ones are porous enough to show the same type of swelling phenomena as the layer structures—and also ion exchange behavior. The zeolites fall in this last category and have been studied extensively, both as ion exchangers and as gas adsorbents (e.g.. Refs. 185 and 186). As an example, Goulding and Talibudeen have reported on isotherms and calorimetric heats of Ca -K exchange for several aluminosilicates [187]. [Pg.417]

Sodium alumiaate is widely used in the preparation of alumina-based catalysts. Aluminosilicate [1327-36-2] can be prepared by impregnating siHca gel with alumiaa obtained from sodium alumiaate and aluminum sulfate (41,42). Reaction of sodium alumiaate with siHca or siHcates has produced porous crystalline alumiaosiHcates which are useful as adsorbents and catalyst support materials, ie, molecular sieves (qv) (43,44). [Pg.140]

Type 4A sieves. A crystalline sodium aluminosilicate with a pore size of about 4 Angstroms, so that, besides water, ethane molecules (but not butane) can be adsorbed. This type of molecular sieves is suitable for drying chloroform, dichloromethane, diethyl ether, dimethylformamide, ethyl acetate, cyclohexane, benzene, toluene, xylene, pyridine and diisopropyl ether. It is also useful for low pressure air drying. The material is supplied as beads, pellets or powder. [Pg.28]

Type 13X sieves. A crystalline sodium aluminosilicate with a pore size of about 10 Angstroms which enables many branched-chain and cyclic compounds to be adsorbed, in addition to all the substances removed by type 5A sieves. [Pg.29]

Molecular sieves are an adsorbent that is produced by the dehydration of naturally occurring or synthetic zeolites (crystalline alkali-metal aluminosilicates). The dehydration leaves inter-crystalline cavities into which normal paraffin molecules are selectively retained and other molecules are excluded. This process is used to remove normal paraffins from gasoline fuels for improved combustion. Molecular sieves are used to manufacture high-purity solvents. [Pg.288]

Zeolites form a unique class of oxides, consisting of microporous, crystalline aluminosilicates that can either be found in nature or synthesized artificially [J.M. Thomas, R.G. Bell and C.R.A. Catlow in Handbook of Heterogeneous Catalysis (Ed. G. Ertl, H. Knbzinger and J. Weitkamp) (1997), Vol. 1, p. 206, VCH, Weinheim.]. The zeolite framework is very open and contains channels and cages where cations, water and adsorbed molecules may reside and react. The specific absorption properties of zeolites are used in detergents, toothpaste, and desiccants, whereas their acidity makes them attractive catalysts. [Pg.199]

Deuterium NMR has recently been used to study molecular motion of organic adsorbates on alumina (1.) and in framework aluminosilicates (2). The advantage of NMR is that the quadrupole interaction dominates the spectrum. This intramolecular interaction depends on the average ordering and dynamics of the individual molecules. In the present work we describe NMR measurements of deuterated benzene in (Na)X and (Cs,Na)X zeolite. [Pg.485]

Figure 6. IR spectra of CO adsorbed at -100°C on the parent aluminosilicates (0 h) and on the FAU and BEA composite materials... Figure 6. IR spectra of CO adsorbed at -100°C on the parent aluminosilicates (0 h) and on the FAU and BEA composite materials...
Synthetic aluminosilicate materials having a structure with regularly spaced channels of molecular dimensions. Accelerators may be adsorbed on this structure and remain inactive at processing temperatures but are released at curing temperatures, thus preventing any possibility of scorching. [Pg.41]

The FPI principle can also be used to develop thin-film-coating-based chemical sensors. For example, a thin layer of zeolite film has been coated to a cleaved endface of a single-mode fiber to form a low-finesse FPI sensor for chemical detection. Zeolite presents a group of crystalline aluminosilicate materials with uniform subnanometer or nanometer scale pores. Traditionally, porous zeolite materials have been used as adsorbents, catalysts, and molecular sieves for molecular or ionic separation, electrode modification, and selectivity enhancement for chemical sensors. Recently, it has been revealed that zeolites possess a unique combination of chemical and optical properties. When properly integrated with a photonic device, these unique properties may be fully utilized to develop miniaturized optical chemical sensors with high sensitivity and potentially high selectivity for various in situ monitoring applications. [Pg.159]

Mechanisms of Sorption Processes. Kinetic studies are valuable for hypothesizing mechanisms of reactions in homogeneous solution, but the interpretation of kinetic data for sorption processes is more difficult. Recently it has been shown that the mechanisms of very fast adsorption reactions may be interpreted from the results of chemical relaxation studies (25-27). Yasunaga and Ikeda (Chapter 12) summarize recent studies that have utilized relaxation techniques to examine the adsorption of cations and anions on hydrous oxide and aluminosilicate surfaces. Hayes and Leckie (Chapter 7) present new interpretations for the mechanism of lead ion adsorption by goethite. In both papers it is concluded that the kinetic and equilibrium adsorption data are consistent with the rate relationships derived from an interfacial model in which metal ions are located nearer to the surface than adsorbed counterions. [Pg.6]

Chemical reactions of adsorbed species are of importance in vast areas of science, the involvement of adsorbed metal ions in catalysis being one example of great economic value. In addition reactions involving adsorbed species can sometimes produce products that may be either difficult or impossible to prepare away from the mineral surface. Therefore, an understanding of the chemical processes that occur in such systems is of potential economic benefit to industrial operations. Such knowledge is also of much wider significance, however, because the movement of ions in most environmental situations is controlled by sorption processes, and aluminosilicate minerals play a major role in many situations. [Pg.357]

Sorption processes are influenced not just by the natures of the absorbate ion(s) and the mineral surface, but also by the solution pH and the concentrations of the various components in the solution. Even apparently simple absorption reactions may involve a series of chemical equilibria, especially in natural systems. Thus in only a comparatively small number of cases has an understanding been achieved of either the precise chemical form(s) of the adsorbed species or of the exact nature of the adsorption sites. The difficulties of such characterization arise from (i) the number of sites for adsorption on the mineral surface that are present because of the isomorphous substitutions and structural defects that commonly occur in aluminosilicate minerals, and (ii) the difference in the chemistry of solutions in contact with a solid surface as compound to bulk solution. Much of our present understanding is derived from experiments using spectroscopic techniques which are able to produce information at the molecular level. Although individual methods may often be applicable to only special situations, significant advances in our knowledge have been made... [Pg.357]

Molecular sieves are crystalline metal aluminosilicates (1). Openings in their crystal structure permit passage of many gas constituents while preferentially adsorbing large, polar, or unsaturated compounds. Acid gas compounds may be adsorbed by certain types of molecular sieves. When used for H2S removal, the sieve is regenerated by a thermal swing cycle CL), being heated to release the H2S for downstream sulfur recovery. [Pg.22]

Humus/SOM enter into a wide variety of physical and chemical interactions, including sorption, ion exchange, free radical reactions, and solubilization. The water holding capacity and buffering capacity of solid surfaces and the availability of nutrients to plants are controlled to a large extent by the amount of humus in the solids. Humus also interacts with solid minerals to aid in the weathering and decomposition of silicate and aluminosilicate minerals. It is also adsorbed by some minerals. [Pg.117]

Organic molecules, oxidation, chemical identity of adsorbed intermediates, 38 21 Organic reactions, catalyzed by crystalline aluminosilicates, 18 305-365 see also Aluminosilicates Organic substates... [Pg.163]


See other pages where Adsorbents aluminosilicates is mentioned: [Pg.413]    [Pg.28]    [Pg.28]    [Pg.154]    [Pg.295]    [Pg.376]    [Pg.416]    [Pg.190]    [Pg.119]    [Pg.31]    [Pg.48]    [Pg.419]    [Pg.469]    [Pg.95]    [Pg.8]    [Pg.8]    [Pg.110]    [Pg.501]    [Pg.245]    [Pg.11]    [Pg.218]    [Pg.328]    [Pg.329]    [Pg.342]    [Pg.342]    [Pg.345]    [Pg.351]    [Pg.99]    [Pg.69]    [Pg.3]    [Pg.63]    [Pg.200]   
See also in sourсe #XX -- [ Pg.534 ]




SEARCH



Aluminosilicate

© 2024 chempedia.info