Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorbate/electrolyte interface

IHP) (the Helmholtz condenser formula is used in connection with it), located at the surface of the layer of Stem adsorbed ions, and an outer Helmholtz plane (OHP), located on the plane of centers of the next layer of ions marking the beginning of the diffuse layer. These planes, marked IHP and OHP in Fig. V-3 are merely planes of average electrical property the actual local potentials, if they could be measured, must vary wildly between locations where there is an adsorbed ion and places where only water resides on the surface. For liquid surfaces, discussed in Section V-7C, the interface will not be smooth due to thermal waves (Section IV-3). Sweeney and co-workers applied gradient theory (see Chapter III) to model the electric double layer and interfacial tension of a hydrocarbon-aqueous electrolyte interface [27]. [Pg.179]

Polarization can be divided into activation polarization and concentration polarization , Activation polarization is an electrochemical reaction that is controlled by the reaction occurring on the metal-electrolyte interface. Figure 4-418 illustrates the concept of activation polarization where hydrogen is being reduced over a zinc surface. Hydrogen ions are adsorbed on the metal surface they pick up electrons from the metal and are reduced to atoms. The atoms combine to... [Pg.1264]

FIG. 1 Geometries of electrolyte interfaces, (a) A planar electrode immersed in a solution with ions, and with the ion distrihution in the double layer, (b) Particles with permanent charges or adsorbed surface charges, (c) A porous electrode or membrane with internal structures, (d) A polyelectrolyte with flexible and dynamic structure in solution, (e) Organized amphophilic molecules, e.g., Langmuir-Blodgett film and microemulsion, (f) Organized polyelectrolytes with internal structures, e.g., membranes and vesicles. [Pg.626]

Guyot-Sionnest P, Tadjeddine A. 1990. Spectroscopic investigations of adsorbates at the metal electrolyte interface using sum frequency generation. Chem Phys Lett 172 341-345. [Pg.405]

Figure 2.4 FT-IRRAS spectrum of the electrode/electrolyte interface for CO adsorbed qn a smooth platinum electrode in 0.5 M H2SOA at 0.4 V vs. NHE. From W.G. Golden, K. Kunimatsu and H. Seki, J. Phys. Chem., 88 (1984) 1275. Copyright 1984 American Chemical Society. Figure 2.4 FT-IRRAS spectrum of the electrode/electrolyte interface for CO adsorbed qn a smooth platinum electrode in 0.5 M H2SOA at 0.4 V vs. NHE. From W.G. Golden, K. Kunimatsu and H. Seki, J. Phys. Chem., 88 (1984) 1275. Copyright 1984 American Chemical Society.
The first report of the SERS spectrum of a species adsorbed at the electrode/ electrolyte interface was by Fleischman et al (1974) and concerned pyridine on silver. The Raman spectrum of the adsorbed pyridine was only observed after repeated oxidation/reduction cycles of the silver electrode, which resulted in a roughened surface. Initially, it was thought that the 106-fold enhancement in emission intensity arose as a result of the substantially increased surface area of the Ag and thus depended simply on the amount of adsorbate. However, Jeanmarie and Van Duync (1977) and Albrecht and Creighton (1977), independently reported that only a single oxidation/reduction cycle was required to produce an intense Raman spectrum and calculations showed that the increase in surface area could not possibly be sufficient to give the observed enhancement. [Pg.118]

The model is most vulnerable in the way it accounts for the number of particles that collide with the electrode [50, 115], In the model, the mass transfer of particles to the cathode is considered to be proportional to the mass transfer of ions. This greatly oversimplifies the behavior of particles in the vicinity of an interface. Another difficulty with the model stems from the reduction of the surface-bound ions. Since charge transfer cannot take place across the non-conducting particle-electrolyte interface, reduction is only possible if the ion resides in the inner Helmholtz layer [116]. Therefore, the assumption that a certain fraction of the adsorbed ions has to be reduced, implies that metal has grown around the particle to cover an identical fraction of the surface. Especially for large particles, it is difficult to see how such a particle, embedded over a substantial fraction of its diameter, could return to the plating bath. Moreover, the parameter itr, that determines the position of the codeposition maximum, is an artificial concept. This does not imply that the bend in the polarisation curve that marks the position of itr is illusionary. As will be seen later on, in the case of copper, the bend coincides with the point of zero-charge of the electrode. [Pg.214]

Subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS), has been used extensively to examine interactions of species at the electrode/electrolyte interface. In the present work, the method has been extended to probe interactions at the mercury solution interface. The diminished potential dependent frequency shifts of species adsorbed at mercury electrodes are compared with shifts observed for similar species adsorbed at d-band metals. [Pg.338]

Vibrational spectroscopy is the experimentalist s most powerful tool for studying the effects of changes in local environment on individual chemical bonds. Studies of simple adsorbates like CO which have strong characteristic absorption bands have contributed greatly to our understanding of adsorption processes at surfaces (1). As shown here and in other papers in this symposium, recent experimental developments have led to a renewed effort to use the vibrational spectroscopy of adsorbates as a probe for understanding the physical chemistry of metal/electrolyte interfaces. [Pg.369]

The electrochemical interface between an electrode and an electrolyte solution is much more difficult to characterize. In addition to adsorbate-substrate and adsorbate-adsorbate interactions, adsorbate-electrolyte interactions play a significant role in the behavior of reactions on electrode surfaces. The strength of the adsorbate-substrate interactions is controlled by the electrode potential, which also determines the configuration of the electrolyte. With solution molecules, ions, and potential variation involved, characterization of the electrochemical interface is extremely difficult. However, by examining solvation, ion adsorption, and potential effects as individual components of the interface, a better understanding is being developed. [Pg.308]

Electro Capillarity and the dropping Mercury Electrode. The term electro capillarity derives from the early application of measurements of interfacial tension at the Hg-electrolyte interface. The interfacial tension, y, can be measured readily with a dropping mercury electrode. E.g., the life time of a drop, tmax. is directly proportional to the interfacial tension y. Thus, y is measured as a function of y in presence and absence of a solute that is adsorbed at the Hg-water interface this kind of data is amenable to thermodynamic interpretation of the surface chemical properties of the electrode-water interface. [Pg.148]

Electrocapiilary phenomena on Hg-electrode in presence and absence of an adsorbate (camphor). From a measurement of interfacial tension (a) (e.g., from droptime of a Hg-electrode) or of differential capacity (d) (e.g., by an a.c-method) as a function of the electrode potential (established by applying a fixed potential across tine Hg-electrolyte interface) one can calculate the extent of adsorption (b) (from (a) by the Gibbs Equation) and of the structure of the interface as a function of the surface potential. Figs, a, c and d are interconnected through the Lippmann Equations. [Pg.149]


See other pages where Adsorbate/electrolyte interface is mentioned: [Pg.111]    [Pg.127]    [Pg.23]    [Pg.111]    [Pg.127]    [Pg.23]    [Pg.2748]    [Pg.244]    [Pg.224]    [Pg.833]    [Pg.834]    [Pg.46]    [Pg.77]    [Pg.83]    [Pg.197]    [Pg.475]    [Pg.76]    [Pg.103]    [Pg.103]    [Pg.108]    [Pg.110]    [Pg.149]    [Pg.69]    [Pg.223]    [Pg.488]    [Pg.229]    [Pg.247]    [Pg.244]    [Pg.187]    [Pg.54]    [Pg.334]    [Pg.381]    [Pg.435]    [Pg.307]    [Pg.318]    [Pg.275]    [Pg.344]    [Pg.346]    [Pg.346]   


SEARCH



Electrolyte interface

© 2024 chempedia.info