Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adrenaline enzymic

There has been some controversy in the literature about the possibility of there being an enzyme system in mammalian body fluids or tissues capable of oxidizing adrenaline to adrenochrome. The claim of Payza and Hoffer that serum oxidizes adrenaline enzymically to adrenochrome42 has been queried by Geller et oZ.29... [Pg.210]

It now appears that many hormones (e.g. glucagon and adrenaline) in both animals and plants exert their effects by, as a first step, decreasing or increasing cyclic AMP within the cell. This may possibly occur by modification of the activity of the enzyme AMP cyclase which generates cyclic AMP from ATP. [Pg.121]

FIGURE 27 5 Tyrosine is the biosynthetic precursor to a number of neurotransmit ters Each transformation IS enzyme catalyzed Hydroxy lation of the aromatic ring of tyrosine converts it to 3 4 dihyd roxyphenylalanine (l dopa) decarboxylation of which gives dopamine Hy droxylation of the benzylic carbon of dopamine con verts It to norepinephrine (noradrenaline) and methy lation of the ammo group of norepinephrine yields epi nephrine (adrenaline)... [Pg.1126]

L-Tyrosine metabohsm and catecholamine biosynthesis occur largely in the brain, central nervous tissue, and endocrine system, which have large pools of L-ascorbic acid (128). Catecholamine, a neurotransmitter, is the precursor in the formation of dopamine, which is converted to noradrenaline and adrenaline. The precise role of ascorbic acid has not been completely understood. Ascorbic acid has important biochemical functions with various hydroxylase enzymes in steroid, dmg, andhpid metabohsm. The cytochrome P-450 oxidase catalyzes the conversion of cholesterol to bUe acids and the detoxification process of aromatic dmgs and other xenobiotics, eg, carcinogens, poUutants, and pesticides, in the body (129). The effects of L-ascorbic acid on histamine metabohsm related to scurvy and anaphylactic shock have been investigated (130). Another ceUular reaction involving ascorbic acid is the conversion of folate to tetrahydrofolate. Ascorbic acid has many biochemical functions which affect the immune system of the body (131). [Pg.21]

In a monograph on ephedrine Gaddum has reviewed the differences in the action of adrenaline and ephedrine and has suggested that the latter has the same relation to adrenaline as physostigmine has to acetylcholine, that is, ephedrine inhibits the action of an enzyme system, which normally destroys adrenaline, or the substance closely resembling it, produced by adrenergic nerves. [Pg.643]

Together with dopamine, adrenaline and noradrenaline belong to the endogenous catecholamines that are synthesized from the precursor amino acid tyrosine (Fig. 1). In the first biosynthetic step, tyrosine hydroxylase generates l-DOPA which is further converted to dopamine by the aromatic L-amino acid decarboxylase ( Dopa decarboxylase). Dopamine is transported from the cytosol into synaptic vesicles by a vesicular monoamine transporter. In sympathetic nerves, vesicular dopamine (3-hydroxylase generates the neurotransmitter noradrenaline. In chromaffin cells of the adrenal medulla, approximately 80% of the noradrenaline is further converted into adrenaline by the enzyme phenylethanolamine-A-methyltransferase. [Pg.42]

Acute treatment with nonselective MAO inhibitors (iproniazid, tranylcypromine, phenelzine), as a consequence of inhibiting both forms of the enzyme, increase, brain levels of all monoamines (phenylethylamine, tryptamine, methylhistamine aminergic neurotransmitters (dopamine, noradr enaline, adrenaline and serotonin). By contrast MAO-A inhibitors (clorgyline) increase serotonin and noradrenaline, while MAO-B inhibitors (selegiline, rasagiline) increase brain levels... [Pg.784]

The pathway for synthesis of the catecholamines dopamine, noradrenaline and adrenaline, illustrated in Fig. 8.5, was first proposed by Hermann Blaschko in 1939 but was not confirmed until 30 years later. The amino acid /-tyrosine is the primary substrate for this pathway and its hydroxylation, by tyrosine hydroxylase (TH), to /-dihydroxyphenylalanine (/-DOPA) is followed by decarboxylation to form dopamine. These two steps take place in the cytoplasm of catecholaminereleasing neurons. Dopamine is then transported into the storage vesicles where the vesicle-bound enzyme, dopamine-p-hydroxylase (DpH), converts it to noradrenaline (see also Fig. 8.4). It is possible that /-phenylalanine can act as an alternative substrate for the pathway, being converted first to m-tyrosine and then to /-DOPA. TH can bring about both these reactions but the extent to which this happens in vivo is uncertain. In all catecholamine-releasing neurons, transmitter synthesis in the terminals greatly exceeds that in the cell bodies or axons and so it can be inferred... [Pg.167]

The enzyme /i-phenylethanolamine-A-methyl transferase, which is required to convert noradrenaline (NA) to adrenaline (Ad), is present in the CNS and there is histofluoro-metric evidence (positive staining with antibodies to that enzyme and to tyrosine hydroxylase and dopamine /i-hydroxylase as well) for adrenergic cell bodies in two groups (nuclei) alongside NA neurons of the locus coeruleus (EC) but ventral and lateral (Ci) and dorsal and medial (C2) to it. Projections go to the hypothalamus and in... [Pg.276]

As previously mentioned, the cells of the adrenal medulla are considered modified sympathetic postganglionic neurons. Instead of a neurotransmitter, these cells release hormones into the blood. Approximately 20% of the hormonal output of the adrenal medulla is norepinephrine. The remaining 80% is epinephrine (EPI). Unlike true postganglionic neurons in the sympathetic system, the adrenal medulla contains an enzyme that methylates norepinephrine to form epinephrine. The synthesis of epinephrine, also known as adrenalin, is enhanced under conditions of stress. These two hormones released by the adrenal medulla are collectively referred to as the catecholamines. [Pg.99]

Tyramine is an amino acid which is present in large quantities in protein rich, fermented and stored products like some cheeses, sausages, red wines, beers etcetera. Tyramine is metabolized into nor-adrenaline by the enzyme mono-amino-oxidase (MAO). If MAO is inhibited by drags nor-adrenaline is accumulated and can give hypertensive crises. [Pg.107]

The first step is catalysed by the tetrahydrobiopterin-dependent enzyme tyrosine hydroxylase (tyrosine 3-monooxygenase), which is regulated by end-product feedback is the rate controlling step in this pathway. A second hydroxylation reaction, that of dopamine to noradrenaline (norepinephrine) (dopamine [3 oxygenase) requires ascorbate (vitamin C). The final reaction is the conversion of noradrenaline (norepinephrine) to adrenaline (epinephrine). This is a methylation step catalysed by phenylethanolamine-jV-methyl transferase (PNMT) in which S-adenosylmethionine (SAM) acts as the methyl group donor. Contrast this with catechol-O-methyl transferase (COMT) which takes part in catecholamine degradation (Section 4.6). [Pg.91]

Synthesis of noradrenaline (norepinephrine) is shown in Figure 4.7. This follows the same route as synthesis of adrenaline (epinephrine) but terminates at noradrenaline (norepinephrine) because parasympathetic neurones lack the phenylethanolamine-N-methyl transferase required to form adrenaline (epinephrine). Acetylcholine is synthesized from acetyl-Co A and choline by the enzyme choline acetyltransferase (CAT). Choline is made available for this reaction by uptake, via specific high-affinity transporters, within the axonal membrane. Following their synthesis, noradrenaline (norepinephrine) or acetylcholine are stored within vesicles. Release from the vesicle occurs when the incoming nerve impulse causes an influx of calcium ions resulting in exocytosis of the neurotransmitter. [Pg.95]

In contrast, much is known about the catabolism of catecholamines. Adrenaline (epinephrine) released into the plasma to act as a classical hormone and noradrenaline (norepinephrine) from the parasympathetic nerves are substrates for two important enzymes monoamine oxidase (MAO) found in the mitochondria of sympathetic neurones and the more widely distributed catechol-O-methyl transferase (COMT). Noradrenaline (norepinephrine) undergoes re-uptake from the synaptic cleft by high-affrnity transporters and once within the neurone may be stored within vesicles for reuse or subjected to oxidative decarboxylation by MAO. Dopamine and serotonin are also substrates for MAO and are therefore catabolized in a similar fashion to adrenaline (epinephrine) and noradrenaline (norepinephrine), the final products being homo-vanillic acid (HVA) and 5-hydroxyindoleacetic acid (5HIAA) respectively. [Pg.97]

Furthermore, as well as CaCM-induced phosphorylation, MLCK is also subject to control via a cAMP-dependent protein kinase, PKA. Phosphorylated MLCK binds CaCM only weakly, thus contraction is impaired. This explains the relaxation of smooth muscle when challenged with adrenaline (epinephrine), a hormone whose receptor is functionally linked with adenylyl cyclase (AC), the enzyme that generates cAMP from ATP. [Pg.236]

A large and diverse group of proteins, including enzymes, cytoskeleton, contractile proteins, and receptors, have been shown to be modified by calpains. Thus, a number of enzymes such as tyrosine hydrolase, tryptophan hydrolase, transglutaminase, protein kinase C, and membrane Ca2+-ATPase are activated by calpain proteolysis [38]. Several receptor proteins, in particular receptors for steroid hormones, growth factors, and adrenaline, are modulated by calpains, which participate also in platelet activation, cell fusion, and mitosis [39], Although the physiological roles of calpains continue to be un-... [Pg.40]

The next key point is to realize that each enzyme in the pathway exists in both active and inactive forms. cAMP initiates a cascade of reactions by activating protein kinase A (PK-A)," the active form of which activates the next enzyme in the sequence, and so on. At the end of the day, glycogen phosphorylase is activated and glucose or ATP is produced. This signaling pathway is a marvelous amplification system. A few molecules of glucagon or adrenaline may induce formation of many molecules of cAMP, which may activate many of PK-A, and so on. The catalytic power of enzymes is magnified in cascades of this sort. [Pg.226]

Adrenaline increases the rate of gluconeogenesis it binds to the a-receptor on the surface of the liver cell, which results in an increase in cytosolic concentration of Ca " ions (Chapter 12). This increases the activity of the Ca " -catmodulin-dependent protein kinase which phosphory-lates and causes similar changes in the activities of the enzymes PFK-2 and pyruvate kinase to those resulting from activation of cyclic-AMP-dependent protein kinase. Hence Ca " ions increase the rate of gluconeogenesis. [Pg.124]

In Uver, adrenaline binds to the a-receptor, and the hormone-receptor complex activates a membrane-bound phospholipase enzyme which hydrolyses the phospholipid phosphatidylinositol 4,5-bisphosphate. This produces two messengers, inositol trisphosphate (IP3) and diacylglycerol (DAG) (Figure 12.5). The increase in IP3 stimulates release of Ca ions from the endoplasmic reticulum into the cytosol, the effect of which is glycogen breakdown and release into the blood (see Figure 12.5 and Chapter 6). [Pg.262]

The function of adrenaline is to mobilise all fuels that can be used by muscle to provide ATP to support physical activity in response to stress (i.e. fight or flight response). And to increase sensitivity of regulation of enzymes involved in control of the rate of processes that generate ATP. The biochemical effects in the heart increase cardiac output, in preparation for fight or flight . [Pg.263]

Epinephrine. Is adrenaline. This substance is highly psychotomimetic in small doses (1 to 5 mg), but is not orally active because enzymes in the stomach destroy its molecular structure. To keep from having to inject it, put a dose under your tongue and let it absorb into your blood stream in this manner. [Pg.126]

Adrenalin is rapidly destroyed by the enzyme amino-oxadize and is therefore ineffective orally. It may be injected, snorted or possibly dissolved under the tongue. It is of considerable value to restore heart beat after sudden heart failure. This is due to its powerful stimulating effect. [Pg.130]

Note that in nature, these are all enzyme-catalysed reactions. This makes the reactions totally specific. It means possible competing Sn2 reactions involving attack at either of the two methylene carbons in SAM are not encountered. It also means that where the substrate contains two or more potential nucleophiles, reaction occurs at only one site, dictated by the enzyme. The enzymes are usually termed methyltransferases. Thus, in animals an A-methyltransferase is responsible for SAM-dependent A-methylation of noradrenaline (norepinephrine) to adrenaline (epinephrine), whereas an O-methyltransferase in plants catalyses esterification of salicylic acid to methyl salicylate. [Pg.200]

This group of enzymes catalyzes the oxidation of amines. Amine oxidase [EC 1.4.3.4], a flavin-containing enzyme (also known as monoamine oxidase, tyramine oxidase, tyraminase, or adrenalin oxidase) catalyzes the reaction of an organic amine R—CH2—NH2) with dioxygen... [Pg.52]

This enzyme [EC 2.1.1.28], also known as phenylethanol-amine A -methyltransferase, catalyzes the reaction of S-adenosyl-L-methionine with phenylethanolamine to produce 5-adenosyl-L-homocysteine and A -methylphenyl-ethanolamine. The enzyme will act on a number of phe-nylethanolamines and will catalyze the conversion of noradrenalin (or norepinephrine) into adrenalin (or epinephrine). [Pg.510]


See other pages where Adrenaline enzymic is mentioned: [Pg.545]    [Pg.32]    [Pg.33]    [Pg.190]    [Pg.84]    [Pg.347]    [Pg.349]    [Pg.350]    [Pg.738]    [Pg.292]    [Pg.217]    [Pg.217]    [Pg.190]    [Pg.59]    [Pg.69]    [Pg.305]    [Pg.79]    [Pg.229]    [Pg.65]    [Pg.108]    [Pg.123]    [Pg.259]    [Pg.261]   
See also in sourсe #XX -- [ Pg.210 ]




SEARCH



Adrenaline

Adrenalins

© 2024 chempedia.info