Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adipic acid structure

Adenosine triphosphate, coupled reactions and. 1128-1129 function of, 157, 1127-1128 reaction with glucose, 1129 structure of, 157, 1044 S-Adenosylmethionine, from methionine, 669 function of, 382-383 stereochemistry of, 315 structure of, 1045 Adipic acid, structure of, 753 ADP, sec Adenosine diphosphate Adrenaline, biosynthesis of, 382-383 molecular model of, 323 slructure of, 24... [Pg.1282]

Amongst the catalysts described in the literature may be mentioned dimethylbenzylamine, dimethlylcyclohexylamine, diethylaminoethanol, Walkylmorpholines and the adipic acid ester of A-diethylaminoethanol. A number of proprietary products of undisclosed composition have also been successfully employed. Emulsifiers include sulphonated castor oil and structure modifiers such as ammonium oleate and silicone oils. [Pg.792]

PA-6,6 is made from the relatively expensive materials hexamethylene diamine and adipic acid. An alternative synthesis of PA-6,6 from adiponitrile and hexamethylene diamine utilizing water is under investigation.16 PA-6 can be synthesized in a continuous process at atmospheric pressure, but reaction times are very long as the ring-opening initiation step is particularly slow. The reaction time can be shortened considerably by carrying out prepolymerization in the presence of excess water at pressure however, this makes the continuous polymerization process more complex. Copolymers with amide units of uniform length (diamides) are relatively new the diamide units are able to crystallize easily and have a thermally stable crystalline structure. [Pg.137]

Polyesters are another important class of polyols. There are many polyester types used, so a generic structure is shown in Scheme 4.4. They are often based on adipic acid and either ethylene glycol (ethylene adipates) or 1,4-butanediol (butylene adipates). Polyesters, because of the polar carbonyl groups, contribute more to intermolecular forces, and physical properties such as tear and impact resistance are often improved by using them. They are also utilized for their solvent and acid resistance and light stability. Relatively poor hydrolytic stability is... [Pg.212]

Heterocyclic block copolymers, 282-284 Heterocyclic diamines, rigid, 281 Heterocyclic polymers, structure-property relationships in, 273-274 Heterocyclic ring formation, PQ and PPQ synthesis by, 309-310 Hexadecyltrimethylammonium bromide (HTMAB), 549-550 Hexamethylene diisocyanate (HDI), 199, 210. See also HDI trimer Hexamethylenediamine-adipic acid salt, 169, 170... [Pg.585]

On February 28, 1935, Carothers project succeeded beyond anyone s wildest dreams. The cheerful, lively Frenchman Berchet produced a superpolymer made from chemicals derived from cheap benzene, a by-product of coal later they would be made from petroleum. A filament teased from Berchet s polymer was, despite its lowly origins, pearly and lustrous. And when it was tested, it proved to be spinnable. Its code name was 6-6 because both its reactants—hexamethylene diamine and adipic acid—had six carbon atoms. Technically, the filament was polyhexamethylene adipamide, a long-chain polymer similar in structure to proteins. It became world-famous as nylon. [Pg.141]

Figure 25.3 b) shows a generic polyester-based polyurethane. The most common polyester repeat units are derived from the polycondensation of adipic acid and a diol, such as ethylene glycol, which results in the structure shown in Fig, 25.4. The average molecular weight of the polyester sequences between urethane links commonly ranges between 400 and 6,000 g/mol. [Pg.384]

The retentive power of graphite towards adipic acid and the catalytic effect of the magnetite, especially present in A, are obvious. TEM examinations of a graphite A sample before and after reaction showed that crystallites of Fe304 appeared to be smaller after the reaction. However, the same graphite sample was reused for three successive reactions without significant loss in yield. When applied to the synthesis of other cyclic ketones (Scheme 7.14), less volatile than 74, it was observed that pressure had an effect on the recovery of product (Tab. 7.9, entries 3 and 4). A slightly reduced pressure (300 mm Hg) was necessary to obtain 3-methylcyclopentanone (75) or cyclohexanone (76) in convenient yield (Tab. 7.9, entries 4 and 5). For the cycliza-tion of suberic acid (73), a less favorable structure, the yield in cycloheptanone (77) remained low (Tab. 7.9, entry 6). [Pg.242]

Figure 12.13 Structure of a PET copolymer with adipic acid, used for deep-dye fibers... Figure 12.13 Structure of a PET copolymer with adipic acid, used for deep-dye fibers...
Fig. 13. Idealized structure of the product of hydroxyl/stearic ester functionalized hyperbranched polyesteramides based on adipic acid and diisopro-panolamine functionalized with octenyl succinic anhydride... [Pg.55]

Effect of 6- Caprolactone and Adipic Acid Molar Ratio for Copolyester III on the Hydrolysis by R. delemar Lipase. The hydrolysis of various copolymers by R. delemar lipase was exam ed to see whether there was an optimum chemical structure or not. Mn of those copolyesters was selected from 17 0 to 2220, to diminish the effect of molecular weight. Optimum molar ratio of e- caprolactone and adipic acid was about from 90 10 to 70 30 (Figure 5). The Tm at the optimum molar ratio was the lowest of all. So it seemed that the existence of optimum molar ratio came from the lowest Tm, which would show the most amorphous material, rather than the optimum chemical structure. [Pg.141]

Hydroxy-terminated polyester (HTPS) is made from diethylene glycol and adipic acid, and hydroxy-terminated polyether (HTPE) is made from propylene glycol. Hydroxy-terminated polyacetylene (HTPA) is synthesized from butynediol and paraformaldehyde and is characterized by acetylenic triple bonds. The terminal OH groups of these polymers are cured with isophorone diisocyanate. Table 4.3 shows the chemical properties of typical polymers and prepolymers used in composite propellants and explosives.E4 All of these polymers are inert, but, with the exception of HTPB, contain relatively high oxygen contents in their molecular structures. [Pg.80]

Carothers next step was to move from polyesters to nylons and to increase the fractional conversion (p) by making salts using the equivalent reaction of 1,6-hexanediamine (hexamethylenediamine) and adipic acid. These salts were recrystallizable from ethanol giving essentially a true 1 1 ratio of reactants. Thus, a high molecular weight polyamide, generally known as simply a nylon, in this case nylon-6,6, was produced from the thermal decomposition of this equimolar salt as shown in structure 4.55. This product has a melting point of 265°C. [Pg.104]

Adipic acid (1,4-butanedicarboxylic acid) is used for the production of nylon-6,6 and may be produced from the oxidation of cyclohexane as shown in structure 17.1. Cyclohexane is obtained by the Raney nickel catalytic hydrogenation of benzene. Both the cyclohexanol and cyclohexanone are oxidized to adipic acid by heating with nitric acid. [Pg.530]

In 1990, DMS introduced nylon-4,6 called Stanyl (structure 19.39), based on the reaction between adipic acid and 1,4-diaminobutane. Stanyl can withstand temperature of about 310°C allowing it to create a niche between conventional nylons and high-performance materials. It was not able to break into the film market and has only now begun to be accepted for tire cord applications. About 22 million pounds of Stanyl was produced in 2001. [Pg.618]

Problem 16.56 Indicate the reactions involved and show the structures of the following condensation polymers obtained from the indicated reactants (a) Nylon 66 from adipic acid and hexamethylene diamine (b) Nylon 6 from e-caprolactam (c) Dacron from methyl terephthalate and ethylene glycol (d) Glyptal from glycerol and terephthalic acid (e) polyurethane from diisocyanates and ethylene glycol. ... [Pg.371]

It is appropriate and very instructive to briefly discuss a relatively new and very successful approach, namely, the development of catalysts with designed and atomically engineered active centers. Thomas and coworkers used micro- and meso-porous solids and carried out delicate structural and compositional variations to prepare specific catalysts capable of promoting regioselective, shape-selective, and enantioselective conversions.183-185 This strategy resulted in the development of framework-substituted CoALPO-18 and MnALPO-18 molecular sieves for the selective aerobic oxidation of linear alkanes to the corresponding monocarboxylic acids,186 and that of hexane to adipic acid.187 Framework-substituted MALPO-36... [Pg.815]

Similar structures have been found for many other dicarboxylic acids, including succinic acid, COOH(CH ) COOH glutaric acid, COOH(CH ) COOH adipic acid, COOH(CH,) pOOH, and sebacic aoid, COOH(CH )jCOOH. Crystal structure determinations have also been made of many carboxylic acid hydrates in all of the crystals the carboxyl groups form hydrogen bonds, usually with water mole oules. An example is oxalic acid dihydrate in this crystal the 0—H 0 distance is 2.50 A. [Pg.480]

Many combinations of diacids—diamines and amino acids are recognized as isomorphic pairs (184), for example, adipic acid and terephthalic acid or 6-aminohexanoic acid and 4-aminocyclohexylacetic acid. In the type AABB copolymers the effect is dependent on the structure of the other comonomer forming the polyamide that is, adipic and terephthalic acids form an isomorphic pair with any of the linear, aliphatic C-6—C-12 diamines but not with -xylylenediamine (185). It is also possible to form nonrandom combinations of two polymers, eg, physical mixtures or blends (Fig. 10), block copolymers, and strictly alternating (187—188) or sequentially ordered copolymers (189), which show a variation in properties with composition differing from those of the random copolymer. Such combinations require care in their preparation and processing to maintain their nonrandom structure, because transamidation introduces significant randomization in a short time above the melting point. [Pg.238]


See other pages where Adipic acid structure is mentioned: [Pg.67]    [Pg.513]    [Pg.675]    [Pg.1]    [Pg.87]    [Pg.50]    [Pg.212]    [Pg.50]    [Pg.515]    [Pg.50]    [Pg.256]    [Pg.165]    [Pg.54]    [Pg.147]    [Pg.134]    [Pg.148]    [Pg.94]    [Pg.290]    [Pg.51]    [Pg.285]    [Pg.217]    [Pg.453]    [Pg.20]    [Pg.73]    [Pg.246]    [Pg.266]   
See also in sourсe #XX -- [ Pg.753 ]

See also in sourсe #XX -- [ Pg.753 ]

See also in sourсe #XX -- [ Pg.612 ]

See also in sourсe #XX -- [ Pg.780 ]




SEARCH



ADIPATE

Adipic acid

© 2024 chempedia.info