Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adhesive prepolymers

Resorcinol Resins. The reactivity of phenol with formaldehyde is greatly increased with two hydroxyl groups on its nucleus (resorcinol VIII). Room temperature polymerization is observed without the need for any catalyst. The rate of reaction goes through a minimum at a pH of 3.5 and increases at lower or higher pH values. To make a useful adhesive, prepolymers, similar to novolaks, are pre-... [Pg.331]

Chem. Descrip. Linear poly (1,6-hexanediol neopentyl glycol adipate) Uses PU intermediate for semiflexible coatings, sol n. adhesives, prepolymer systems... [Pg.481]

Two-component polyurethane adhesives Prepolymer NCOHSICO with polyol OH OH Used as structural adhesive. Usually the curing... [Pg.74]

Polyurethane adhesives are known for excellent adhesion, flexibihty, toughness, high cohesive strength, and fast cure rates. Polyurethane adhesives rely on the curing of multifunctional isocyanate-terrninated prepolymers with moisture or on the reaction with the substrate, eg, wood and ceUulosic fibers. Two-component adhesives consist of an isocyanate prepolymer, which is cured with low equivalent weight diols, polyols, diamines, or polyamines. Such systems can be used neat or as solution. The two components are kept separately before apphcation. Two-component polyurethane systems are also used as hot-melt adhesives. [Pg.350]

Water-borne adhesives are preferred because of restrictions on the use of solvents. Low viscosity prepolymers are emulsified in water, followed by chain extension with water-soluble glycols or diamines. As cross-linker PMDI can be used, which has a shelf life of 5 to 6 h in water. Water-borne polyurethane coatings are used for vacuum forming of PVC sheeting to ABS shells in automotive interior door panels, for the lamination of ABS/PVC film to treated polypropylene foam for use in automotive instmment panels, as metal primers for steering wheels, in flexible packaging lamination, as shoe sole adhesive, and as tie coats for polyurethane-coated fabrics. PMDI is also used as a binder for reconstituted wood products and as a foundry core binder. [Pg.350]

Polyurethane sealant formulations use TDI or MDI prepolymers made from polyether polyols. The sealants contain 30—50% of the prepolymer the remainder consists of pigments, fiUers, plastici2ers, adhesion promoters, and other additives. The curing of the sealant is conducted with atmospheric moisture. One-component windshield sealants utili2e diethyl malonate-blocked MDI prepolymers (46). Several polyurethane hybrid systems, containing epoxies, siUcones, or polysulfide, are also used. [Pg.350]

The first urethane reaction in Fig. 1 is used in two major ways in adhesives. In one case, a two-component adhesive usually employs a polyol and polyisocyanate with catalyst. This can react at room temperature to form the polyurethane. The second use of this reaction is to make an isocyanate-terminated prepolymer. Reacting a stoichiometric excess of isocyanate with polyol can produce an isocyanate-terminated prepolymer. A prepolymer is often made with an NCO/OH ratio of 2.0, as shown below, but the isocyanate ratio can range from 1.4 to over 8.0, depending upon the application ... [Pg.762]

The reaction of water with isocyanate is shown in the third item of Fig. 1 [5]. The water/isocyanate reaction is the major curing mechanism for the one-component urethane adhesives. Most one-component urethanes are based on an isocyanate-terminated prepolymer (I). Usually, the moisture in the air is used to cure the adhesive, but in some instances, a fine mist of water may be introduced on top of the adhesive before the bond is closed, in order to facilitate cure ... [Pg.763]

Initially, the water slowly reacts with the isocyanate. However, the reaction can be catalyzed with an appropriate catalyst, such as dibutyltin dilaurate or a morpholine tertiary amine catalyst. The isocyanate will react with water to form a carbamic acid, which is unstable and splits off carbon dioxide, to produce a terminal amine end group (see p. 76 in [6]). This amine then reacts with more isocyanate-terminated prepolymer, as shown above, to form a polyurea. This process repeats itself, building up molecular weight and curing to become a polyurea-polyurethane adhesive. [Pg.764]

In most cases, the allophanate reaction is an undesirable side reaction that can cause problems, such as high-viscosity urethane prepolymers, lower pot lives of curing hot-melt adhesives, or poor shelf lives of certain urethane adhesives. The allophanate reaction may, however, produce some benefits in urethane structural adhesives, e.g., additional crosslinking, additional modulus, and resistance to creep. The same may be said about the biuret reaction, i.e., the reaction product of a substituted urea linkage with isocyanate. The allophanate and biuret linkages are not usually as thermally stable as urethane linkages [8]. [Pg.764]

Blocked isocyanate, for our purposes, will refer to the reaction product of a diisocyanate or isocyanate-terminated prepolymer in which the isocyanate functionality has been reacted with a blocking agent . Once blocked , the diisocyanate can be added to polyols or certain chain extenders, and these materials will not react at room temperature. The concept is shown in the sixth item of Fig. 1. An adhesive formulated with a blocked isocyanate is basically a two-component adhesive that does not react until heated to the activation temperature. When an adhesive is made with a blocked isocyanate together with hydroxyl-containing curatives, the adhesive has a good long shelf life at room temperature. However, once heated... [Pg.765]

Monomeric MDI Pure 4,4 -MDI 2.0 Solid (MP = 37 C) Flexible prepolymers Liquid 1-K adhesive Thermoplastic adhesives Curing hot melts Solvent-borne adhesives... [Pg.768]

A variety of applications exist for liquid, 100% solid adhesives, (An adhesive is considered 100% solid if there is no solvent in the adhesive.) Some of the largest uses include structural wood adhesives and adhesives used for the transportation industry, such as windshield adhesives and those used for bonding composite sidewalls of a recreational vehicle (RV). Structural wood adhesives are often made of a polymeric MDI with functionality of approximately 2.7 or higher. Rigid assemblies often utilize polymeric MDI, whereas flexible adhesive assemblies will more often utilize pure MDI, a solid waxy material that melts at around 37°C, or a modified MDI , i.e., MDI that has been modified to make it a liquid at room temperature. Prepolymers are made with ratios of anywhere from NCO/OH = 1.6 to 3.0 or higher. [Pg.782]

Most moisture-curing liquid adhesives utilize poly(oxypropylene) (PPG) polyols, as shown above. These raw materials produce among the lowest-viscosity prepolymers but may not have sufficient modulus at higher temperatures for some applications. A certain percentage of polyester polyols may also be utilized to boost performance, but these may cause a large increase in viscosity, and so they are more often used in conjunction with polyether polyols to provide a high-performance adhesive with workable viscosities. Poly(butadiene) polyols may be utilized for specific adhesion characteristics. [Pg.782]

Catalysts serve a dual purpose in one-component moisture-curing urethanes. The first purpose is to accelerate the prepolymer synthesis. The second purpose is to catalyze the curing reaction of the adhesive with moisture. The most common catalysts used to promote both prepolymer formation (NCO/OH) and later the adhesive curing reaction (NCO/H2O) are dibutyltin dilaurate and DMDEE ((tertiary amine. A stabilizer such as 2,5-pentanedione is sometimes added when tin is used, but this specific stabilizer has fallen from favor in recent years, due to toxicity concerns. DMDEE is commonly used in many one-component moisture-curing urethanes. DMDEE is one of the few tertiary amines with a low alkalinity and a low vapor pressure. The latter... [Pg.782]

The ketimine is an acetone-blocked diamine. The synthesis and applications of ketimines will be discussed later. The curing concept for the adhesive is shown in Fig. 7. Phenol-blocked prepolymers would normally unblock at approximately 150°C. However, an aliphatic diamine, generated by the hydrolysis of the ketimine to an aliphatic diamine and ketone as a result of exposure to the moisture in the air, is sufficient to cure the windshield adhesive at room temperature. [Pg.793]

An EB-curable struetural adhesive formulation usually eonsists of one or more crosslinkable oligomeric resins or prepolymers, along with such additives as reactive diluents, plasticizers, and wetting agents. The oligomer is an important component in terms of the development of mechanical properties. The adhesive and cohesive properties depend on the crosslink density, chemical group substitution, and molecular organization within the polymer matrix. Adhesion is achieved... [Pg.1012]

Few non.chemists know exactly what an epoxide is. but practically everyone has used an "epoxy glue for household repairs or an epoxy resin for a protective coating. Epoxy resins and adhesives generally consist of two components that are mixed just prior to use. One component is a liquid "prepolymer/ and the second is a "curing agent" that reacts with the prepolymer and causes it to solidify. [Pg.673]

Epoxy adhesives are prepared in two steps. S -2 reaction of the disodium salt of bisphenol A with cpichlorohydrin forms a "prepolymer," which is then "cured" by treatment with a triaminc such as I-I2NCH2CH2NHCH2CH2NEI2-... [Pg.840]

The full-prepolymer, quasi-prepolymer, and one-shot techniques may appear to be quite similar, but they each have important bearing on equipment requirements and physical properties. The full-prepolymer method, for example, is die process of choice for making high-performance cast elastomers with superb dynamic properties, such as industrial bumpers and bushings. Quasi-prepolymers are used in less demanding applications like shoe soles, adhesives, and spray elastomers. One-shots make up the rest, including most foams and elastomers. [Pg.237]

Example 11. One-Component, Moisture-Cure Polyurethane Sealant. This example is of a low-hardness, high-elongation, moisture-curable polyurethane sealant. The material is based on a low-%NCO prepolymer made from 4,4 -MDI and a low-unsaturation (low-monol-content) Acclaim polyol from Bayer. It is adapted from (a) J. Lear et al., Adhesives Age, February 1999, pp. 18-23 and (b) B. Lawrey, et al., presented at UTECH 2000, The Hague, The Netherlands, March 30, 2000, Crain Communications London, 2000. [Pg.256]


See other pages where Adhesive prepolymers is mentioned: [Pg.327]    [Pg.9274]    [Pg.252]    [Pg.195]    [Pg.327]    [Pg.9274]    [Pg.252]    [Pg.195]    [Pg.326]    [Pg.234]    [Pg.539]    [Pg.459]    [Pg.251]    [Pg.554]    [Pg.731]    [Pg.768]    [Pg.781]    [Pg.783]    [Pg.785]    [Pg.819]    [Pg.1034]    [Pg.1071]    [Pg.673]    [Pg.203]    [Pg.238]    [Pg.238]    [Pg.240]    [Pg.240]    [Pg.220]    [Pg.36]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Prepolymer

Prepolymer prepolymers

© 2024 chempedia.info