Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adhesion thermodynamics

Qualitatively speaking, the term adhesion designates the cohesion between two media, whether they be identical or not. However, it is more difficult to give a quantitative definition. This concept may be understood from three complementary angles fundamental adhesion, thermodynamic adhesion and experimental adhesion. [Pg.46]

Here, Si, S2, S3 are the interfaces of solid-liquid 1, solid—liquid 2, and liquid 1-liquid 2, and v is the rate of separation. When cementing in water and oil products, the adhesive is liquid 1 and the medium is liquid 2. Equation (5.2) indicates that spontaneous wetting (without mechanical work to the interface) is possible when the surface tensions of the adhesive and the liquid are equal, i.e., for crad Hq = although the maximal value of (Tadliq is desirable because it is directly proportional to the adhesion thermodynamic work. [Pg.266]

Finally, this new model clearly shows that both approaches studied (i) on the one hand, the estimation of the free energy of adhesion, -thermodynamic quantity-. [Pg.100]

After presenting the relevant theoretical details, concept of and their relationship to solid surface free energy, it is now appropriate to examine the various surface chemical conditions which predict optimum adhesion. Thermodynamic work of adhesion, W, is the commonly used criterion for optimizing adhesion, but, as will be discussed in the following paragraphs, there are other quantities which should also be considered. [Pg.140]

From the standpoint of thermodynamics, the dissolving process is the estabHsh-ment of an equilibrium between the phase of the solute and its saturated aqueous solution. Aqueous solubility is almost exclusively dependent on the intermolecular forces that exist between the solute molecules and the water molecules. The solute-solute, solute-water, and water-water adhesive interactions determine the amount of compound dissolving in water. Additional solute-solute interactions are associated with the lattice energy in the crystalline state. [Pg.495]

An inversion of these arguments indicates that release agents should exhibit several of the following features (/) act as a barrier to mechanical interlocking (2) prevent interdiffusion (J) exhibit poor adsorption and lack of reaction with at least one material at the interface (4) have low surface tension, resulting in poor wettabihty, ie, negative spreading coefficient, of the release substrate by the adhesive (5) low thermodynamic work of adhesion ... [Pg.100]

Many of these features are interrelated. Finely divided soHds such as talc [14807-96-6] are excellent barriers to mechanical interlocking and interdiffusion. They also reduce the area of contact over which short-range intermolecular forces can interact. Because compatibiUty of different polymers is the exception rather than the rule, preformed sheets of a different polymer usually prevent interdiffusion and are an effective way of controlling adhesion, provided no new strong interfacial interactions are thereby introduced. Surface tension and thermodynamic work of adhesion are interrelated, as shown in equations 1, 2, and 3, and are a direct consequence of the intermolecular forces that also control adsorption and chemical reactivity. [Pg.100]

Most of the various strategies which have been proposed to predict relative adhesive interfacial strength are based on thermodynamics. One may define, without ambiguity, as shown in Fig. 3, a thermodynamic work of adhesion , Wa,... [Pg.6]

Fig. 3. Definition of thermodynamic work of adhesion, Wa (a) disjoining surfaces in vacuum (b) disjoining surfaces in fluid medium m and (c) disjoining surfaces in presence of vapors from adhesive. Fig. 3. Definition of thermodynamic work of adhesion, Wa (a) disjoining surfaces in vacuum (b) disjoining surfaces in fluid medium m and (c) disjoining surfaces in presence of vapors from adhesive.
The most-often cited theoretical underpinning for a relationship between practical adhesion energy and the work of adhesion is the generalized fracture mechanics theory of Gent and coworkers [23-25] and contributed to by Andrews and Kinloch [26-29]. This defines a linear relationship between the mechanical work of separation, kj, , and the thermodynamic work of adhesion ... [Pg.10]

Combination of Eq. 7 or Eq. 8 with the Young-Dupre equation, Eq. 3, suggests that the mechanical work of separation (and perhaps also the mechanical adhesive interface strength) should be proportional to (I -fcos6l) in any series of tests where other factors are kept constant, and in which the contact angle is finite. This has indeed often been found to be the case, as documented in an extensive review by Mittal [31], from which a few results are shown in Fig. 5. Other important studies have also shown a direct relationship between practical and thermodynamic adhesion, but a discussion of these will be deferred until later. It would appear that a useful criterion for maximizing practical adhesion would be the maximization of the thermodynamic work of adhesion, but this turns out to be a serious over-simplification. There are numerous instances in which practical adhesion is found not to correlate with the work of adhesion at ail, and sometimes to correlate inversely with it. There are various explanations for such discrepancies, as discussed below. [Pg.11]

In what follows, particular attention is given to semi-empirical strategies for optimizing contact adhesion and diffusion interphase adhesion. The former centers around maximizing the strength of inteimolecular interactions across a true interface, while the latter seeks to maximize thermodynamic compatibility between the phases. [Pg.17]

Complete wetting, i.e. spontaneous spreading should always be sought to maximize adhesion. This condition occurs when, with reference to Fig. 4, it is not possible to satisfy the horizontal force balance, i.e. ys > Vl + Ysl- The thermodynamic driving force for the spreading process is the spreading coefficient. [Pg.25]

Whatever the specific system or situation, the key issue in diffusion interphase adhesion is physical compatibility. This is once again, a thermodynamic issue and may be quantified in terms of mutual solubility. Most of the strategies for predicting diffusion interphase adhesion are based on thermodynamic compatibility criteria. Thus it is appropriate to review briefly the relevant issues of solution thermodynamics and to seek quantitative measures of compatibility between the phases to be bonded. [Pg.46]

The JKR theory relates the interfacial-force-induced contact deformation to the thermodynamic work of adhesion between solids, and provides a theoretical... [Pg.75]

The van der Waals and other non-covalent interactions are universally present in any adhesive bond, and the contribution of these forces is quantified in terms of two material properties, namely, the surface and interfacial energies. The surface and interfacial energies are macroscopic intrinsic material properties. The surface energy of a material, y, is the energy required to create a unit area of the surface of a material in a thermodynamically reversible manner. As per the definition of Dupre [14], the surface and interfacial properties determine the intrinsic or thermodynamic work of adhesion, W, of an interface. For two identical surfaces in contact ... [Pg.77]

When the surfaces are in contact due to the action of the attractive interfacial forces, a finite tensile load is required to separate the bodies from adhesive contact. This tensile load is called the pull-off force (P ). According to the JKR theory, the pull-off force is related to the thermodynamic work of adhesion (W) and the radius of curvature (/ ). [Pg.84]

In an appropriately designed experiment, it is possible to measure the pull-off force (Ps), contact radius (a versus P, ao and aj, and the separation profile outside the contact zone (D versus j ). From these measurements, it is possible to determine the thermodynamic work of adhesion between two surfaces, if the contacting bodies are perfectly elastic. [Pg.84]

Viscoelastic polymers essentially dominate the multi-billion dollar adhesives market, therefore an understanding of their adhesion behavior is very important. Adhesion of these materials involves quite a few chemical and physical phenomena. As with elastic materials, the chemical interactions and affinities in the interface provide the fundamental link for transmission of stress between the contacting bodies. This intrinsic resistance to detachment is usually augmented several folds by dissipation processes available to the viscoelastic media. The dissipation processes can have either a thermodynamic origin such as recoiling of the stretched polymeric chains upon detachment, or a dynamic and rate-sensitive nature as in chain pull-out, chain disentanglement and deformation-related rheological losses in the bulk of materials and in the vicinity of interface. [Pg.122]

The premise of the above analysis is the fact that it has treated the interfacial and bulk viscoelasticity equally (linearly viscoelastic experiencing similar time scales of relaxation). Falsafi et al. make an assumption that the adhesion energy G is constant in the course of loading experiments and its value corresponds to the thermodynamic work of adhesion W. By incorporating the time-dependent part of K t) into the left-hand side (LHS) of Eq. 61 and convoluting it with the evolution of the cube of the contact radius in the entire course of the contact, one can generate a set of [LHS(t), P(0J data. By applying the same procedure described for the elastic case, now the set of [LHS(t), / (Ol points can be fitted to the Eq. 61 for the best values of A"(I) and W. [Pg.127]


See other pages where Adhesion thermodynamics is mentioned: [Pg.1437]    [Pg.65]    [Pg.600]    [Pg.1437]    [Pg.65]    [Pg.600]    [Pg.3]    [Pg.415]    [Pg.100]    [Pg.277]    [Pg.1880]    [Pg.154]    [Pg.5]    [Pg.8]    [Pg.9]    [Pg.15]    [Pg.18]    [Pg.30]    [Pg.66]    [Pg.68]    [Pg.79]    [Pg.81]    [Pg.98]    [Pg.102]    [Pg.121]    [Pg.129]   
See also in sourсe #XX -- [ Pg.33 ]

See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Thermodynamic adhesion

© 2024 chempedia.info