Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adenosine hydrolysis

Active Transport. Maintenance of the appropriate concentrations of K" and Na" in the intra- and extracellular fluids involves active transport, ie, a process requiring energy (53). Sodium ion in the extracellular fluid (0.136—0.145 AfNa" ) diffuses passively and continuously into the intracellular fluid (<0.01 M Na" ) and must be removed. This sodium ion is pumped from the intracellular to the extracellular fluid, while K" is pumped from the extracellular (ca 0.004 M K" ) to the intracellular fluid (ca 0.14 M K" ) (53—55). The energy for these processes is provided by hydrolysis of adenosine triphosphate (ATP) and requires the enzyme Na" -K" ATPase, a membrane-bound enzyme which is widely distributed in the body. In some cells, eg, brain and kidney, 60—70 wt % of the ATP is used to maintain the required Na" -K" distribution. [Pg.380]

Nicotinamide is incorporated into NAD and nicotinamide is the primary ckculating form of the vitamin. NAD has two degradative routes by pyrophosphatase to form AMP and nicotinamide mononucleotide and by hydrolysis to yield nicotinamide adenosine diphosphate ribose. [Pg.50]

Phosphodiesterase Inhibitors. Because of the complexity of the biochemical processes involved in cardiac muscle contraction, investigators have looked at these pathways for other means of dmg intervention for CHF. One of the areas of investigation involves increased cycHc adenosine monophosphate [60-92-4] (cAMP) through inhibition of phosphodiesterase [9025-82-5] (PDE). This class of compounds includes amrinone, considered beneficial for CHF because of positive inotropic and vasodilator activity. The mechanism of inotropic action involves the inhibition of PDE, which in turn inhibits the intracellular hydrolysis of cAMP (130). In cascade fashion, cAMP-catalyzed phosphorylation of sarcolemmal calcium-channels follows, activating the calcium pump (131). A series of synthetic moieties including the bipyridines, amrinone and milrinone, piroximone and enoximone, [77671-31-9], C22H22N2O2S, all of which have been shown to improve cardiac contractiUty in short-term studies, were developed (132,133). These dmgs... [Pg.129]

Lymn, R.W. Taylor, E.W. Mechanism of adenosine triphosphate hydrolysis of actomyosin. Biochemistry 10 4617-4624, 1971. [Pg.298]

R. W., and Veech, R. L., 1973. The cqnitibrimn constants of the adenosine triphosphate hydrolysis and the aelenosine triphos-phate-eitrate lyase rc<7cfions. Journal of Biological Chemisti y 2A%i6966- 6972.)... [Pg.78]

Cyclic nucleotide phosphodiesterases (PDEs) are a class of enzymes that catalyze the hydrolysis of 3, 5 -cyclic guanosine monophosphate (cGMP) or 3, 5 -cyclic adenosine monophosphate (cAMP) to 5 -guanosine monophosphate (GMP) or 5 -adenosine monophosphate (AMP), respectively. [Pg.963]

Thiamine can be considered to be the product of the quatemization of 4-methyl-5-(2-hydroxymethyl)thiazole (5) by an active derivative of 4-amino-5-(hydroxymethyl)-2-methyl pyrimidine (4) (Scheme 2). In living cells, pyramine can be activated by conversion into the diphosphate 7, via monophosphate 6, and the substrate of the enzyme responsible for the quatemization is not the thiamine thiazole, but its phosphate 8. The product of the condensation, thiamine phosphate (9), is finally converted into diphosphate 2—the biochemically active derivative—by hydrolysis to free thiamine, followed by diphosphorylation, or more directly, in some cases. Enzymes are known for all of the steps depicted in Scheme 2, and adenosine triphosphate (ATP) is, as usual, the phosphate donor. [Pg.269]

Stein, L.A., Schwarz, R., Chock, P.B., Eisenberg, E. (1979). Mechanism of actomyosin adenosine triphosphatase. Evidence that adenosine 5 -triphosphate hydrolysis can occur without dissociation of the actomyosin complex. Biochemistry 18, 3895-3909. [Pg.237]

Phosphate also plays a central role in the transmission and control of chemical energy within the cells primarily via the hydrolysis of the terminal phosphate ester bond of the adenosine triphosphate (ATP) molecule (Fig. 14-3b). In addition, phosphate is a necessary constituent of phospholipids, which are important components in cell membranes, and as mentioned before, of apatite, which forms structural body parts such as teeth and bones. It is not surprising, therefore, that the cycling of P is closely linked with biological processes. This connection is, in fact, inseparable as organisms cannot exist without P, and their existence controls, to a large extent, the natural distribution of P. [Pg.363]

Phosphate condensation reactions play an essential role in metabolism. Recall from Section 14.6 that the conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) requires an input of free energy ADP -I-H3 PO4 ATP +H2O AG° — +30.6kJ As also described in that section, ATP serves as a major biochemical energy source, releasing energy in the reverse, hydrolysis, reaction. The ease of interchanging O—H and O—P bonds probably accounts for the fact that nature chose a phosphate condensation/hydrolysis reaction for energy storage and transport. [Pg.1530]

In addition, hving cells need a system of energy storage and this is provided by bond energy, strictly the free energy of hydrolysis of a diphosphate bond in the compound adenosine triphosphate (ATP). [Pg.17]

Attention has been drawn to the potential of phosphoric acid anhydrides of nucleoside 5 -carboxylic acids (14) as specific reagents for investigating the binding sites of enzymes. For example, (14 B = adenosine) inactivates adenylosuccinate lyase from E. coli almost completely, but has little effect on rabbit muscle AMP deaminase. The rate of hydrolysis of (14) is considerably faster than that of acetyl phosphate, suggesting intramolecular assistance by the 3 -hydroxyl group or the 3-nitrogen atom. [Pg.125]

The conformations of L-adenylyl-(3 5 )-L-adenosine (28) and L-adenylyl-(2 -> 5 )-L-adenosine (29), as deduced from circular dichroic spectra, are different from the corresponding DD-dinucleotides. < The n.m.r. and u.v. absorption spectra of (28) and (29) are the same as the DD-dimers and their chromatographic and electrophoretic properties appear identical. While (28) and (29) are resistant to enzymic hydrolysis they form complexes with polyU. [Pg.132]

The effect of receptor stimulation is thus to catalyze a reaction cycle. This leads to considerable amplification of the initial signal. For example, in the process of visual excitation, the photoisomerization of one rhodopsin molecule leads to the activation of approximately 500 to 1000 transdudn (Gt) molecules, each of which in turn catalyzes the hydrolysis of many hundreds of cyclic guanosine monophosphate (cGMP) molecules by phosphodiesterase. Amplification in the adenylate cyclase cascade is less but still substantial each ligand-bound P-adrenoceptor activates approximately 10 to 20 Gs molecules, each of which in turn catalyzes the production of hundreds of cyclic adenosine monophosphate (cAMP) molecules by adenylate cyclase. [Pg.216]

Increased extracellular ATP breakdown has been seen in vitro during electrical field stimulation and during hypoxia (Lloyd et al., 1993). Although this source of extracellular adenosine accumulation remains a possibility, it has been found that inhibition of extracellular AMP hydrolysis does not significantly affect adenosine levels (Rosenberg et al., 2000). The main source of adenosine is thus probably intracellular, and possibly related to increased energy consumption. [Pg.346]

Nitric oxide (NO) is an intercellular signaling molecule that can inhibit neuronal energy production (Brorson et al., 1999 Malefic et al., 2004). It has been found that NO donors cause large increases in extracellular adenosine in cultures of forebrain neurons (Rosenberg et al., 2000). These were shown to be caused by NO release, and the accumulation of adenosine was not blocked by probenecid (ENT blocker) or GMP (a blocker of AMP hydrolysis), suggesting that adenosine was likely of intracellular origin. Indeed, it was found that NO donors caused a decrease in intracellular ATP and the inhibition of adenosine kinase activity, possibly due to the rise in adenosine. [Pg.346]

Rosenberg, P. A., Li, Y., Le, M. Zhang, Y. (2000). Nitric oxide-stimulated increase in extracellular adenosine accumulation in rat forebrain neurons in culture is associated with ATP hydrolysis and inhibition of adenosine kinase activity. [Pg.360]

F. H. Westheimer (1987) has provided a detailed survey of the multifarious ways in which phosphorus derivatives function in living systems (Table 4.7). The particular importance of phosphorus becomes clear when we remember that the daily turnover of adenosine triphosphate (ATP) in the metabolic processes of each human being amounts to several kilograms Phosphate residues bond two nucleotides or deoxynucleotides in the form of a diester, thus making possible the formation of RNA and DNA the phosphate always contains an ionic moiety, the negative charge of which stabilizes the diester towards hydrolysis and prevents transfer of these molecules across the lipid membrane. [Pg.115]


See other pages where Adenosine hydrolysis is mentioned: [Pg.2828]    [Pg.2828]    [Pg.124]    [Pg.377]    [Pg.536]    [Pg.127]    [Pg.294]    [Pg.2133]    [Pg.333]    [Pg.693]    [Pg.1035]    [Pg.43]    [Pg.7]    [Pg.1127]    [Pg.17]    [Pg.20]    [Pg.1274]    [Pg.358]    [Pg.422]    [Pg.175]    [Pg.177]    [Pg.198]    [Pg.595]    [Pg.640]    [Pg.111]    [Pg.103]    [Pg.153]    [Pg.343]    [Pg.344]    [Pg.16]    [Pg.298]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



5 -Adenosine monophosphate hydrolysis

Adenosine 3 ,5 -cyclic phosphate, hydrolysis

Adenosine diphosphate, hydrolysis

Adenosine study, hydrolysis

Adenosine triphosphatase hydrolysis

Adenosine triphosphate , hydrolysis

Adenosine triphosphate , hydrolysis active transport

Adenosine triphosphate, coupled reactions hydrolysis

Adenosine triphosphates hydrolysis

Adenosine-5 -phosphate hydrolysis

Equilibrium constants adenosine triphosphate hydrolysis

Magnesium ions adenosine triphosphate hydrolysis

© 2024 chempedia.info