Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel adducts

COT is prepared by the polymerization of ethyne at moderate temperature and pressure in the presence of nickel salts. The molecule is non-planar and behaves as a typical cyclic olefin, having no aromatic properties. It may be catalytically hydrogenated to cyclo-octene, but with Zn and dil. sulphuric acid gives 1,3,6-cyclooclairiene. It reacts with maleic anhydride to give an adduct, m.p. 166 C, derived from the isomeric structure bicyclo-4,2,0-octa-2,4,7-triene(I) ... [Pg.122]

Fortunately, in the presence of excess copper(II)nitrate, the elimination reaction is an order of magnitude slower than the desired Diels-Alder reaction with cyclopentadiene, so that upon addition of an excess of cyclopentadiene and copper(II)nitrate, 4.51 is converted smoothly into copper complex 4.53. Removal of the copper ions by treatment with an aqueous EDTA solution afforded in 71% yield crude Diels-Alder adduct 4.54. Catalysis of the Diels-Alder reaction by nickel(II)nitrate is also... [Pg.116]

Hydrazine—borane compounds are made by the reaction of sodium borohydride and a hydrazine salt in THF (23,24). The mono-(N2H4 BH ) and di-(N2H4 2BH2) adducts are obtained, depending on the reaction conditions. These compounds have been suggested as rocket fuels (25) and for chemical deposition of nickel—boron alloys on nonmetallic surfaces (see Metallic COATINGS) (26). [Pg.277]

Most commercial sorbic acid is produced by a modification of this route. Catalysts composed of metals (2inc, cadmium, nickel, copper, manganese, and cobalt), metal oxides, or carboxylate salts of bivalent transition metals (2inc isovalerate) produce a condensation adduct with ketene and crotonaldehyde (22—24), which has been identified as (5). [Pg.283]

Monomer-oligomer equilibria. [Ni(Me-sal)2], mentioned above as a typical planar complex, is a much studied compound. In pyridine it is converted to the octahedral bispyridine adduct (/zsoo = 3.1 BM), while in chloroform or benzene the value of is intermediate but increases with concentration. This is ascribed to an equilibrium between the diamagnetic monomer and a paramagnetic dimer, which must involve a coordination number of the nickel of at least 5 a similar explanation is acceptable also for the paramagnetism of the solid when heated above 180°C. The trimerization of Ni(acac)2 to attain octahedral coordination has already been referred to but it may also be noted that it is reported to be monomeric and planar in dilute chloroform solutions. [Pg.1160]

The acetate (1) and its mosylate analog (79) have been shown to undergo cydoad-dition with the CN double bond of alkyl imines to generate substituted pyrrolidines in the presence of nickel or palladium catalyst [35]. For example, both the phenyl imine (80) and the diazene (81) gave reasonable yields of adducts (82) and (83) respectively (Scheme 2.23). [Pg.73]

Enantioselectivities were found to change sharply depending upon the reaction conditions including catalyst structure, reaction temperature, solvent, and additives. Some representative examples of such selectivity dependence are listed in Scheme 7.42. The thiol adduct was formed with 79% ee (81% yield) when the reaction was catalyzed by the J ,J -DBFOX/Ph aqua nickel(II) complex at room temperature in dichloromethane. Reactions using either the anhydrous complex or the aqua complex with MS 4 A gave a racemic adduct, however, indicating that the aqua complex should be more favored than the anhydrous complex in thiol conjugate additions. Slow addition of thiophenol to the dichloromethane solution of 3-crotonoyl-2-oxazolidinone was ineffective for enantioselectivity. Enantioselectivity was dramatically lowered and reversed to -17% ee in the reaction at -78 °C. A similar tendency was observed in the reactions in diethyl ether and THF. For example, a satisfactory enantioselectivity (80% ee) was observed in the reaction in THF at room temperature, while the selectivity almost disappeared (7% ee) at 0°C. [Pg.286]

Since these adducts undergo reductive desulfuration with Raney nickel, optically active aryl methyl sulfoxides are versatile reagents for the conversion of imines to optically active amines. [Pg.772]

The majority of the work on xanthates of divalent nickel has, in recent years, been centered on the formation of base adducts with [Ni(Rxant)2]. Carlin and Siegel (348) and Daktenieks and Graddon (349) reported the formation of paramagnetic [Ni(Etxant)2B2] or [Ni(Etaxant)2B], where B = pyridine, 4-methylpyridine, bipyridyl, or... [Pg.256]

The electronic spectra of a range of dithio- and perthiocarboxylato-nickel(II) complexes and their pyridine adducts show the presence of a variety of structures in solution, but complete interpretation of the spectra was prevented by lack of a complete MO treatment of these complexes (378). [Pg.260]

The adduct between CO and a nickel center in CODH identified by EPR spectroscopy. ... [Pg.308]

Macrolactones 77 and/or 78 can be prepared from the reductive cyclisation of ynals 76 in the presence of NHC-nickel complexes (Scheme 5.21) [21], This maaolactonisation occnrs with different selectivity depending on the ligands attached to the nickel. If carbenes snch as IMes or IPr are nsed, the exocyclic olefin 77 is preferentially obtained, however when phosphine ligands are nsed, the endocyclic adducts 78 are preferentially obtained. [Pg.143]

Nickel(O) reacts with the olefin to form a nickel(0)-olefin complex, which can also coordinate the alkyl aluminum compound via a multicenter bond between the nickel, the aluminum and the a carbon atom of the trialkylaluminum. In a concerted reaction the aluminum and the hydride are transferred to the olefin. In this mechanistic hypothesis the nickel thus mostly serves as a template to bring the olefin and the aluminum compound into close proximity. No free Al-H or Ni-H species is ever formed in the course of the reaction. The adduct of an amine-stabihzed dimethylaluminum hydride and (cyclododecatriene)nickel, whose structure was determined by X-ray crystallography, was considered to serve as a model for this type of mechanism since it shows the hydride bridging the aluminum and alkene-coordinated nickel center [31]. [Pg.52]

In spite of the modest asymmetric induction it was concluded that at least one of the chiral ligands is coordinated to the nickel in the catalyticaUy active species. An alternative interpretation was given by Wilke and coworkers [29]. They could show that (methylsalicyhdene)dimethylaluminum forms a stable adduct with nickel(O) complexes. It was concluded that the asymmetric induction in Pino s experiment might be attributed to a complex in which the chiral Hgand is complexed to the Lewis acidic aluminum. [Pg.63]

The asymmetric nickel-catalyzed hydroalumination of prochiral terminal alkenes using adducts of BujAl and chiral amines was reported in 1981 [74], Among the different amines investigated, (-)-N,N-dimethylmenthylamine (DMMA) gave the best enantioselectivities. For example, reaction of 2,3,3-trimethyl-l-butene (39) at room temperature with 0.33 equiv. of the DMMA/iBu3Al adduct in the presence of 0.6 mol% of Ni(mesal)2 gave, after oxidation of the intermediate organoaluminum compounds, 2,3,3-trimethyl-l-butanol 40 in 76% yield and 27% ee (Scheme 2-19). [Pg.64]

Notably, not only electron-rich dienes, but also electron-deficient dienes nicely participate in the reaction and react benzaldehyde with similar ease and in a similar sense of stereoselectivity. For example, methyl sorbate provides the 1,2-anti isomer exclusively in good yield with excellent regio- and stereoselectivity (run 7). The regioselectivity reacting at Cl of the diene skeleton might stem from electronic factors rather than from other factors such as coordination the coordination of the ester oxygen to nickel metal center, since ( , )-l-(methoxymethyl)-4-methyl-l,3-butadiene and (E,E)-1-(hydroxymethyl)-4-methyl-l,3-butadiene furnish the C4 adducts selectively together with the Cl adducts as minor products (not shown). Notably,... [Pg.194]


See other pages where Nickel adducts is mentioned: [Pg.28]    [Pg.133]    [Pg.380]    [Pg.49]    [Pg.130]    [Pg.25]    [Pg.177]    [Pg.136]    [Pg.286]    [Pg.7]    [Pg.431]    [Pg.620]    [Pg.682]    [Pg.58]    [Pg.645]    [Pg.132]    [Pg.331]    [Pg.255]    [Pg.257]    [Pg.259]    [Pg.34]    [Pg.567]    [Pg.11]    [Pg.72]    [Pg.71]    [Pg.21]    [Pg.58]    [Pg.39]    [Pg.51]    [Pg.8]    [Pg.34]    [Pg.990]    [Pg.249]    [Pg.262]   
See also in sourсe #XX -- [ Pg.175 , Pg.176 , Pg.177 , Pg.178 , Pg.179 , Pg.180 , Pg.181 , Pg.182 , Pg.183 , Pg.184 , Pg.185 , Pg.186 , Pg.187 ]




SEARCH



Bridging ligands nickel adducts

Chelating ligands nickel adducts

Nitrogen nickel adducts

© 2024 chempedia.info