Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Additives epoxy compounds

Cost bilizers. In most cases the alkyl tin stabilizets ate particularly efficient heat stabilizers for PVC without the addition of costabilizers. Many of the traditional coadditives, such as antioxidants, epoxy compounds, and phosphites, used with the mixed metal stabilizer systems, afford only minimal benefits when used with the alkyl tin mercaptides. Mercaptans are quite effective costabilizets for some of the alkyl tin mercaptides, particularly those based on mercaptoethyl ester technology (23). Combinations of mercaptan and alkyl tin mercaptide ate currendy the most efficient stabilizers for PVC extmsion processes. The level of tin metal in the stabilizer composition can be reduced by up to 50% while maintaining equivalent performance. Figure 2 shows the two-roU mill performance of some methyl tin stabilizers in a PVC pipe formulation as a function of the tin content and the mercaptide groups at 200°C. [Pg.548]

Cost bilizers. The variety of known costabiHzers for the mixed metal stabilizers is a very long listing. There are, however, a relatively small number of commercially used costabiHzers. Some of these additives can also be added by the PVC compounder or processor ia addition to the stabilizer package to further enhance the desired performance characteristics. The epoxy compounds and phenoHc antioxidants are among the most commonly used costabiHzers with the mixed metal stabilizers. [Pg.550]

Epo>y Compounds. Epoxidized soya oil (ESO) is the most widely used epoxy-type additive and is found ia most mixed metal stabilized PVC formulations at 1.0—3.0 phr due to its versatiHty and cost effectiveness. Other usefiil epoxy compounds are epoxidized glycerol monooleate, epoxidized linseed oil, and alkyl esters of epoxidized tall oil fatty acid. [Pg.550]

The basic metal salts and soaps tend to be less cosdy than the alkyl tin stabilizers for example, in the United States, the market price in 1993 for calcium stearate was about 1.30— 1.60, zinc stearate was 1.70— 2.00, and barium stearate was 2.40— 2.80/kg. Not all of the coadditives are necessary in every PVC compound. Typically, commercial mixed metal stabilizers contain most of the necessary coadditives and usually an epoxy compound and a phosphite are the only additional products that may be added by the processor. The requited costabilizers, however, significantly add to the stabilization costs. Typical phosphites, used in most flexible PVC formulations, are sold for 4.00— 7.50/kg. Typical antioxidants are bisphenol A, selling at 2.00/kg Nnonylphenol at 1.25/kg and BHT at 3.50/kg, respectively. Pricing for ESO is about 2.00— 2.50/kg. Polyols, such as pentaerythritol, used with the barium—cadmium systems, sells at 2.00, whereas the derivative dipentaerythritol costs over three times as much. The P-diketones and specialized dihydropyridines, which are powerful costabilizers for calcium—zinc and barium—zinc systems, are very cosdy. These additives are 10.00 and 20.00/kg, respectively, contributing significantly to the overall stabilizer costs. Hydrotalcites are sold for about 5.00— 7.00/kg. [Pg.551]

Optically pure (S)-benzyl methyl sulfoxide 139 can be converted to the corresponding a-lithio-derivative, which upon reaction with acetone gave a diastereomeric mixture (15 1) of the /S-hydroxysulfoxide 140. This addition reaction gave preferentially the product in which the configuration of the original carbanion is maintained. By this reaction, an optically active epoxy compound 142 was prepared from the cyclohexanone adduct 141181. Johnson and Schroeck188,189 succeeded in obtaining optically active styrene oxide by recrystallization of the condensation product of (+ )-(S)-n-butyl methyl sulfoxide 143 with benzaldehyde. [Pg.615]

As mentioned earlier, when NO concentration exceeds that of superoxide, nitric oxide mostly exhibits an inhibitory effect on lipid peroxidation, reacting with lipid peroxyl radicals. These reactions are now well studied [42-44]. The simplest suggestion could be the participation of NO in termination reaction with peroxyl radicals. However, it was found that NO reacts with at least two radicals during inhibition of lipid peroxidation [50]. On these grounds it was proposed that LOONO, a product of the NO recombination with peroxyl radical LOO is rapidly decomposed to LO and N02 and the second NO reacts with LO to form nitroso ester of fatty acid (Reaction (7), Figure 25.1). Alkoxyl radical LO may be transformed into a nitro epoxy compound after rearrangement (Reaction (8)). In addition, LOONO may be hydrolyzed to form fatty acid hydroperoxide (Reaction (6)). Various nitrated lipids can also be formed in the reactions of peroxynitrite and other NO metabolites. [Pg.777]

Seong (2002) compared silylated (aldehyde) and silanated (amine and epoxy) compounds from several commercial sources to the performance of an antigen (IgG) microarray. In addition, the efficiency of phosphate-buffered saline (PBS) (pH 7.4) and carbonate (pH 9.6) printing buffers were compared. While the various slides and surface chemistries showed differences in their binding isotherms, they ultimately reached similar levels of saturation. Silylated (aldehyde) slides showed comparable loading in both buffer systems. Apparently, tethering of antibody to the surface by Schiff s base formation of the surface aldehyde and lysine residues on the protein was applicable over a broad pH. However, carbonate buffer increased binding of proteins on silanated surfaces. [Pg.67]

The sesquiterpene skeleton has also been assembled by the intramolecular nitrile oxide cycloaddition sequence. Oxime 238 (obtained from epoxy silyl ether 237), on treatment with sodium hypochlorite gave isoxazoline 239, which was sequentially hydrolyzed and then subjected to the reductive hydrolysis conditions-cyclization sequence to give the furan derivative 240 (330) (Scheme 6.93). In three additional steps, compound 240 was converted to 241. This structure contains the C11-C21 segment of the furanoterpene ent-242, that could be obtained after several more steps (330). [Pg.448]

This paper reports the results of a molecular-level investigation of the effects of flame retardant additives on the thermal dedompositlon of thermoset molding compounds used for encapsulation of IC devices, and their implications to the reliability of devices in molded plastic packages. In particular, semiconductor grade novolac epoxy and silicone-epoxy based resins and an electrical grade novolac epoxy formulation are compared. This work is an extension of a previous study of an epoxy encapsulant to flame retarded and non-flame retarded sample pairs of novolac epoxy and silicone-epoxy compounds. The results of this work are correlated with separate studies on device aglng2>3, where appropriate. [Pg.213]

It is well known 113,14 20 25> that the addition of hydroxyl-containing compounds (water, alcohols, phenols, acids) considerably promotes the interaction of epoxy compounds with amines and other nucleophilic reagents. In this case, the epoxy ring carbon atom becomes more sensitive to nucleophilic attack. The reaction proceeds through a trimolecular transition state initially suggested by Smith26 27) for the reactions of epoxy compounds with amines2... [Pg.116]

The idea of the decisive role of complexing reactions makes possible to unterstand such peculiarities of epoxy compound reactions with primary and secondary amines as a rather unusual, from the kinetic point of view, simultaneous occurrence of the autoacceleration and autoinhibition reactions, catalytic and inhibitive effects of various solvents, and obvious ortho-effect of a number of substituents in aromatic amines, the influence of tertiary amines as additives and some other 5,6,13.14.30,... [Pg.119]

Table 11 presents one more result important for the chemistry of epoxy compounds, namely within the experimental error the rate constant of the free ion is the same for all counterions. This means that such strong nucleophilic particles as carbanions (and evidently alkoxy anions) are capable of opening the epoxy ring without additional electrophilic activation. This result explains the apparently contradictory results that, depending on the reaction conditions, either tri-140 144,166-I71) or bimolecular kinetics 175-I79> is observed. The bimolecular kinetics also can be explained in terms of the trimolecular mechanism, since proton-donor additives play a dual role. [Pg.155]

TA can be effetive additives for controlling the reaction rate in the curing of epoxy compounds with primary amines. [Pg.160]

An ASA-PBT with improved hydrolysis resistance and reduced warp was reported for a resin composition containing a difunctional epoxy compound such as bis(3,4-epoxycyclohexylmethyl) adipate [81]. To increase the heat distortion temperature of a PBT-ASA blend by 10-20°C, the addition of talc at a... [Pg.354]

Chemical analysis of an insulator from one supplier indicated polymer fragments and curing byproducts, as shown in Figure 10-13. In contrast, an analysis of an insulator from another supplier indicated significant differences. In the second case, traces of polymer fragments were found in addition to thorough crosslinking of the epoxy compound. [Pg.328]

Singlet oxygen oxidation of acetoguaicone, 44 at pH 3 produced only methoxy-p-quinone, 52. Epoxidation of compound 52 by residual hydrogen peroxide does not occur at pH 3. Vanillyl alcohol, 45, and apocynol, 46 both produced methoxy-p-quinone, 52 and 3-methoxy-5,6-epoxy-p-quinone, 51. Apocynol methylether, 47 produced the same quinones (50 and 52) as did compounds 45 and 46, in addition to compound 51. [Pg.573]

Urethane groups react with alkyleneoxides [(propylene oxide (PO), ethylene oxide (EO)], by the addition of epoxy compounds to the -NH- group containing active hydrogen, from the urethane groups. [Pg.520]

T. Nishikubo, et al., Soluble polymer-supported catalysts containing pendant quaternary onium salt residues for regioselective addition reaction of epoxy compound with active ester. Macromolecules 1994, 27(25), 7240-7247. [Pg.476]

Recognition that heat stabilization of the plasticizer as well as the PVC resin was necessary greatly assisted researchers working on the problem. Epoxy compounds perform both functions. Today, they are part of many stabilization systems for vinyl compositions, so much so that worldwide use approaches 400 million pounds. In addition to vinyl stabilization, they are also used in phosphate ester functional fluids (i.e., fire-resistant hydraulic fluids) where acid development must also be avoided. [Pg.628]


See other pages where Additives epoxy compounds is mentioned: [Pg.97]    [Pg.97]    [Pg.267]    [Pg.158]    [Pg.247]    [Pg.66]    [Pg.64]    [Pg.325]    [Pg.214]    [Pg.63]    [Pg.392]    [Pg.118]    [Pg.158]    [Pg.233]    [Pg.522]    [Pg.160]    [Pg.1]    [Pg.654]    [Pg.654]    [Pg.2252]    [Pg.2265]    [Pg.257]    [Pg.556]    [Pg.233]    [Pg.38]    [Pg.227]   
See also in sourсe #XX -- [ Pg.4 , Pg.39 ]




SEARCH



Epoxies additives

Epoxy compounds

© 2024 chempedia.info