Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homolytic Acylation

Minisci-type substitution is one of the most useful reactions for the synthesis of alkyl- and acyl-substituted heteroaromatics. The acyl radicals are formed by the redox decomposition from aldehyde and /-butyl hydroperoxide or by silver-catalyzed decarboxylation of a a-keto acid with persulfate. Synthesis of acylpyrazines 70 as ant pheromones are achieved by this methodology using trialkyl-substituted pyrazines 69 with the acyl radicals generated from aldehydes or a-keto acids (Equation 10) <1996J(P1)2345>. The latter radicals are highly effective for the acylation. Homolytic alkylation of 6-chloro-2-cyanopyrazine 71 is performed by silver-catalyzed decarboxylation of alkanoic acids to provide 5-alkyl-substituted pyrazines 72 (Scheme 18) <1996CCC1109>. [Pg.292]

Homolytic acylation of ethyl pyridazine-4-carboxylate is a convenient general method for preparation of 4-acylpyridazines (Scheme 42) (79M365). [Pg.30]

The reaction is likely to proceed by a radical-chain mechanism, involving intermediate formation of carboxyl radicals, as in the related Kolbe electrolytic synthesis. Initially the bromine reacts with the silver carboxylate 1 to give an acyl hypobromite species 3 together with insoluble silver bromide, which precipitates from the reaction mixture. The unstable acyl hypobromite decomposes by homolytic cleavage of the O-Br bond, to give a bromo radical and the carboxyl radical 4. The latter decomposes further to carbon dioxide and the alkyl radical 5, which subsequently reacts with hypobromite 3 to yield the alkyl bromide 2 and the new carboxyl radical 4Z... [Pg.167]

Two examples from ketone photochemistry that has been recently analyzed within the context of solid-to-solid transformations are the Norrish type and Nor-rish-Yang type Ip44,i45 tactions. In general terms, the type I reaction consists of a homolytic cleavage of bond a-to the carbonyl to generate an acyl-alkyl radical pair (RP-A) or an acyl-alkyl biradical (BR-A) when the ketone is cyclic (Scheme 7.15). [Pg.306]

For the route A, acyl radicals donors like iS are readily generated from acyl selenides (ISa) or acyl cobalt derivatives (iSb) and radicals acceptors 2S are usually multiple bonds as in methyl vinyl ketone (2Sa) -although some homolytic substitutions are possible. On the other hand, nitriles GSal are useful acceptors (3S) in radical cyclisations and 4Sa is an obvious synthon equivalent of radical donor 4S (See Table 7.2). [Pg.205]

Two sources of acyl radicals have proved to be useful for the homolytic acylation of protonated heteroaromatic bases the oxidation of aldehydes and the oxidative decarboxylation of a-keto acids. The oxidation... [Pg.150]

The possibility of using other sources of acyl radicals, such as tin hydrides and acyl chlorides, is complicated by the fact that homolytic acylation requires an oxidizing medium for the rearomatization of the... [Pg.151]

The synthetic interest in homolytic acylation is connected with the following aspects ... [Pg.152]

Two steps must be considered in the mechanism of homolytic acylation, in addition to the formation of the acyl radical. The first fits in with the generally accepted mechanism of homolytic aromatic substitution, that is, the addition of the acyl radical to the aromatic nucleus to give an adduct in which the unpaired electron is delocalized over the residual heteroaromatic system (u-complex 6). [Pg.155]

The homolytic acylation of protonated heteroaromatic bases is, as with alkylation, characterized by high selectivity. Only the positions a and y to the heterocyclic nitrogen are attacked. Attack in the position or in the benzene ring of polynuclear heteroaromatics has never been observed, even after careful GLC analysis of the reaction products. Quinoline is attacked only in positions 2 and 4 the ratio 4-acyl- to 2-acylquinoline was 1.3 with the acetyl radical from acetaldehyde, 1.7 with the acetyl radical from pyruvic acid, and 2.8 with the benzoyl radical from benzaldehyde. [Pg.157]

The high selectivity of homolytic acylation of protonated heteroaromatic bases and the fact that under the same experimental conditions homocyclic substrates (benzene, anisole, nitrobenzene, protonated aniline, and A,A-dimethylaniline) are not attacked, indicate that polar effects play a dominant role. Only aromatic substrates with very strong electron-deficient character give rise to significant homolytic acylation. [Pg.157]

A study of substituent effects in the homolytic acylation of 2- and 4-substituted quinolines with acetyl and benzoyl radicals has confirmed this character of the reaction. The benzoyl radical shows a higher nucleophilic character than the acetyl. This has been explained by the fact that the polar character originates in the contribution of the polar form (7) in the transition state. [Pg.157]

Also, the results of the substituent effects in homolytic acylation of protonated heteroaromatic bases must be connected, as for homolytic alkylation, with the polar characteristics of the acyl radicals and the aromatic substrates, but not with the stabilization of the intermediate a-complexes. [Pg.158]

The intermediate generated in pyrolysis of IV-acylacetyl-iV-phenylhydroxylamines 48 can form a 3-aza-4-oxa-l,5-diene system (50) (equation 16). A homolytic cleavage of the O—H bond with subsequent rearrangement to the aniline radical, followed by recombination with the hydrogen radical to give the corresponding 0-acyl hydroxylamine 49,... [Pg.355]

The synthesis of deoxysepiapterin (82) has been recently achieved by homo-lytic nucleophilic substitution of the pteridine nucleus by acyl radicals (505). Since this substitution arises preferentially at the most electron-deficient 7 position, protection at 7 position is necessary for nucleophilic attack at the 6 position. 2,4-Diamino-7-methylthiopteridine (597) and 2-amino-4- -pentyloxy-7-n-pro-pylthiopteridine (600), protected by the thio function, can be used as starting materials. Homolytic acylation of 597 with the system propionalde-hyde/Fe2+//ert-butylhydroperoxide afforded 6-propionylpteridine (598) in good yields, which could be transformed to deoxysepiapterin (82) by selective hydrolysis followed by deprotection of the thio function (Scheme 75). Deoxysepiapterin (82) can also be prepared by a similar procedure from 600. [Pg.300]

Thermal decomposition in three different ways, i.e. homolytic, polar and radical induced decomposition, as well as intermolecular reaction of sulfonyl peroxides are the main reactions displayed by sulfonyl peroxides. When bis(arylsulfonyl) peroxides are allowed to decompose at 25-40 °C in chloroform, homolytic 0—0 bond fission followed by hydrogen abstraction from the solvent results in the formation of the corresponding arylsnlfonic acids. Mixed acyl sulfonyl peroxides undergo complicated thermal decomposition in solution, and have been used commercially as polymerization initiators, since they provide a source of free radicals at a relatively low temperature . [Pg.1005]

The results for sulphonyl endoperoxide 65a are shown in Scheme 21 with the products acylated for characterization purposes. A full rationalization via an all-homolytic mechanism is depicted in Scheme 22. [Pg.1306]

Some homolytic fragmentation reactions are driven by formation of small, stable molecules. Alkyl acyloxyl radicals (RCOp decarboxylate rapidly (fe > 1 x 10 s ) to give alkyl radicals, and even aryl acyloxyl radicals (ArCOp decarboxylate to aryl radicals with rate constants in the 10 s range." Azo radicals produced in the homolysis of azo initiators eliminate nitrogen rapidly. Elimination of carbon monoxide from acyl radicals occurs but is slow enough (fe 10" -10 such that the acyl radical can be trapped in a bimolecular process,... [Pg.152]


See other pages where Homolytic Acylation is mentioned: [Pg.103]    [Pg.326]    [Pg.126]    [Pg.290]    [Pg.204]    [Pg.781]    [Pg.894]    [Pg.212]    [Pg.403]    [Pg.81]    [Pg.829]    [Pg.306]    [Pg.17]    [Pg.124]    [Pg.126]    [Pg.151]    [Pg.152]    [Pg.153]    [Pg.154]    [Pg.165]    [Pg.178]    [Pg.48]    [Pg.362]    [Pg.892]    [Pg.212]    [Pg.292]    [Pg.559]    [Pg.7]    [Pg.204]   


SEARCH



Homolytic

© 2024 chempedia.info