Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acylation cycle

Entry Substituents Acylation conditions Acyl. Cycl. Ref. [Pg.76]

These semisynthetic proteins have served as useful tools to investigate and study the role of Ras proteins in the cell, for instance, new insights in the so-called Ras acylation cycle could be obtained as well as solid-state nuclear magnetic resonance (NMR) spectroscopic analysis of the lipidated membrane anchor and proteins became possible. ... [Pg.574]

Conjugated unsaturated fatty acids are made simply by stopping the acylation cycle at that stage and hydrolysing the thiol ester linkage between the unsaturated acyl chain and ACP. They always have the B (turns) configuration and are the starting points for other biosynthetic pathways. [Pg.1427]

Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PIH. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 2005 307 1746-1752. [Pg.923]

Enzymes involved in most protein lipidation pathways have been identified, with the exception of members of the acyltransferase and thioesterase family involved in S-acylation and its turnover. Although many PATs and a single cytoplasmic APT have been identified, many more remain to be discovered. For example, new APTs will have to be identified in order to understand the acylation cycle-dependent trafficking of 5-acylated proteins like Ras. Also, proteins/enzymes have been assigned to all steps of the GPI biosynthetic pathway... [Pg.56]

Then N-Boc-O-benzylserine is coupled to the free amino group with DCC. This concludes one cycle (N° -deprotection, neutralization, coupling) in solid-phase synthesis. All three steps can be driven to very high total yields (< 99.5%) since excesses of Boc-amino acids and DCC (about fourfold) in CHjClj can be used and since side-reactions which lead to soluble products do not lower the yield of condensation product. One side-reaction in DCC-promoted condensations leads to N-acylated ureas. These products will remain in solution and not reaa with the polymer-bound amine. At the end of the reaction time, the polymer is filtered off and washed. The times consumed for 99% completion of condensation vary from 5 min for small amino acids to several hours for a bulky amino acid, e.g. Boc-Ile, with other bulky amino acids on a resin. A new cycle can begin without any workup problems (R.B. Merrifield, 1969 B.W. Erickson, 1976 M. Bodanszky, 1976). [Pg.232]

The 4-phosphopantetheine group of CoA is also utilized (for essentially the same purposes) in acyl carrier proteins (ACPs) involved in fatty acid biosynthesis (see Chapter 25). In acyl carrier proteins, the 4-phosphopantetheine is covalently linked to a serine hydroxyl group. Pantothenic acid is an essential factor for the metabolism of fat, protein, and carbohydrates in the tricarboxylic acid cycle and other pathways. In view of its universal importance in metabolism, it is surprising that pantothenic acid deficiencies are not a more serious problem in humans, but this vitamin is abundant in almost all foods, so that deficiencies are rarely observed. [Pg.593]

The final step in the /3-oxidation cycle is the cleavage of the /3-ketoacyI-CoA. This reaction, catalyzed by thiolase (also known as j8-ketothiolase), involves the attack of a cysteine thiolate from the enzyme on the /3-carbonyI carbon, followed by cleavage to give the etiolate of acetyl-CoA and an enzyme-thioester intermediate (Figure 24.17). Subsequent attack by the thiol group of a second CoA and departure of the cysteine thiolate yields a new (shorter) acyl-CoA. If the reaction in Figure 24.17 is read in reverse, it is easy to see that it is a Claisen condensation—an attack of the etiolate anion of acetyl-CoA on a thioester. Despite the formation of a second thioester, this reaction has a very favorable A).q, and it drives the three previous reactions of /3-oxidation. [Pg.788]

In essence, this series of four reactions has yielded a fatty acid (as a CoA ester) that has been shortened by two carbons, and one molecule of acetyl-CoA. The shortened fatty acyl-CoA can now go through another /3-oxidation cycle, as shown in Figure 24.10. Repetition of this cycle with a fatty acid with an even number of carbons eventually yields two molecules of acetyl-CoA in the final step. As noted in the first reaction in Table 24.2, complete /3-oxidation of palmitic acid yields eight molecules of acetyl-CoA as well as seven molecules of FADHg and seven molecules of NADFI. The acetyl-CoA can be further metabolized in the TCA cycle (as we have already seen). Alternatively, acetyl-CoA can also be used as a substrate in amino acid biosynthesis (Chapter 26). As noted in Chapter 23, however, acetyl-CoA cannot be used as a substrate for gluco-neogenesis. [Pg.789]

Polyunsaturated fatty acids pose a slightly more complicated situation for the cell. Consider, for example, the case of linoleic acid shown in Figure 24.24. As with oleic acid, /3-oxidation proceeds through three cycles, and enoyl-CoA isomerase converts the cA-A double bond to a trans-b double bond to permit one more round of /3-oxidation. What results this time, however, is a cA-A enoyl-CoA, which is converted normally by acyl-CoA dehydrogenase to a trans-b, cis-b species. This, however, is a poor substrate for the enoyl-CoA hydratase. This problem is solved by 2,4-dienoyl-CoA reductase, the product of which depends on the organism. The mammalian form of this enzyme produces a trans-b enoyl product, as shown in Figure 24.24, which can be converted by an enoyl-CoA isomerase to the trans-b enoyl-CoA, which can then proceed normally through the /3-oxidation pathway. Escherichia coli possesses a... [Pg.794]

FIGURE 24.24 The oxidation pathway for polyunsaturated fatty adds, illustrated for linoleic add. Three cycles of /3-oxidation on linoleoyl-CoA yield the cis-A, d.s-A intermediate, which is converted to a tran.s-A, cis-A intermediate. An additional round of /S-oxi-dation gives d.s-A enoyl-CoA, which is oxidized to the trans-A, d.s-A species by acyl-CoA dehydrogenase. The subsequent action of 2,4-dienoyl-CoA reductase yields the trans-A product, which is converted by enoyl-CoA isomerase to the tran.s-A form. Normal /S-oxida-tion then produces five molecules of acetyl-CoA. [Pg.795]

This impressive reaction is catalyzed by stearoyl-CoA desaturase, a 53-kD enzyme containing a nonheme iron center. NADH and oxygen (Og) are required, as are two other proteins cytochrome 65 reductase (a 43-kD flavo-protein) and cytochrome 65 (16.7 kD). All three proteins are associated with the endoplasmic reticulum membrane. Cytochrome reductase transfers a pair of electrons from NADH through FAD to cytochrome (Figure 25.14). Oxidation of reduced cytochrome be, is coupled to reduction of nonheme Fe to Fe in the desaturase. The Fe accepts a pair of electrons (one at a time in a cycle) from cytochrome b and creates a cis double bond at the 9,10-posi-tion of the stearoyl-CoA substrate. Og is the terminal electron acceptor in this fatty acyl desaturation cycle. Note that two water molecules are made, which means that four electrons are transferred overall. Two of these come through the reaction sequence from NADH, and two come from the fatty acyl substrate that is being dehydrogenated. [Pg.815]

Step 1 of Figure 29.12 Addition to Oxaloacetate Acetyl CoA enters the citric acid cycle in step 1 by nucleophilic addition to the oxaloacetate carbonyl group, to give (S)-citryl CoA. The addition is an aldol reaction and is catalyzed by citrate synthase, as discussed in Section 26.11. (S)-Citryl CoA is then hydrolyzed to citrate by a typical nucleophilic acyl substitution reaction, catalyzed by the same citrate synthase enzyme. [Pg.1156]

SxxK free-standing penicillin-binding proteins (PBPs) are uncoupled SxxK acyl transferases that work mainly as bacterial wall peptidoglycan-hydrolases and function as auxiliary cell-cycle proteins. They are not essential. [Pg.1169]

Figure 3. Mitochondrial fatty acid oxidation. Long-chain fatty acids are converted to their CoA-esters as described in the text, and their fatty-acyl-groups transferred to CoA in the matrix by the concerted action of CPT 1, the acylcarnitine/carnitine exchange carrier and CPT (A) as described in the text. Medium-chain and short-chain fatty acids (Cg or less) diffuse directly into the matrix where they are converted to their acyl-CoA esters by a acyl-CoA synthase. The mechanism of p-oxidation is shown below (B). Each cycle of P-oxidation removes -CH2-CH2- as an acetyl unit until the fatty acids are completely converted to acetyl-CoA. The enzymes catalyzing each stage of P-oxidation have different but overlapping specificities. In muscle mitochondria, most acetyl-CoA is oxidized to CO2 and H2O by the citrate cycle (Figure 4) some is converted to acylcamitine by carnitine acetyltransferase (associated with the inner face of the inner membrane) and exported from the matrix. Some acetyl-CoA (if in excess) is hydrolyzed to acetate and CoASH by acetyl-CoA hydrolase in the matrix. Enzymes ... Figure 3. Mitochondrial fatty acid oxidation. Long-chain fatty acids are converted to their CoA-esters as described in the text, and their fatty-acyl-groups transferred to CoA in the matrix by the concerted action of CPT 1, the acylcarnitine/carnitine exchange carrier and CPT (A) as described in the text. Medium-chain and short-chain fatty acids (Cg or less) diffuse directly into the matrix where they are converted to their acyl-CoA esters by a acyl-CoA synthase. The mechanism of p-oxidation is shown below (B). Each cycle of P-oxidation removes -CH2-CH2- as an acetyl unit until the fatty acids are completely converted to acetyl-CoA. The enzymes catalyzing each stage of P-oxidation have different but overlapping specificities. In muscle mitochondria, most acetyl-CoA is oxidized to CO2 and H2O by the citrate cycle (Figure 4) some is converted to acylcamitine by carnitine acetyltransferase (associated with the inner face of the inner membrane) and exported from the matrix. Some acetyl-CoA (if in excess) is hydrolyzed to acetate and CoASH by acetyl-CoA hydrolase in the matrix. Enzymes ...
The mechanism for the lipase-catalyzed reaction of an acid derivative with a nucleophile (alcohol, amine, or thiol) is known as a serine hydrolase mechanism (Scheme 7.2). The active site of the enzyme is constituted by a catalytic triad (serine, aspartic, and histidine residues). The serine residue accepts the acyl group of the ester, leading to an acyl-enzyme activated intermediate. This acyl-enzyme intermediate reacts with the nucleophile, an amine or ammonia in this case, to yield the final amide product and leading to the free biocatalyst, which can enter again into the catalytic cycle. A histidine residue, activated by an aspartate side chain, is responsible for the proton transference necessary for the catalysis. Another important factor is that the oxyanion hole, formed by different residues, is able to stabilize the negatively charged oxygen present in both the transition state and the tetrahedral intermediate. [Pg.172]


See other pages where Acylation cycle is mentioned: [Pg.107]    [Pg.147]    [Pg.1430]    [Pg.795]    [Pg.1430]    [Pg.1430]    [Pg.142]    [Pg.124]    [Pg.124]    [Pg.125]    [Pg.134]    [Pg.138]    [Pg.107]    [Pg.147]    [Pg.1430]    [Pg.795]    [Pg.1430]    [Pg.1430]    [Pg.142]    [Pg.124]    [Pg.124]    [Pg.125]    [Pg.134]    [Pg.138]    [Pg.257]    [Pg.63]    [Pg.644]    [Pg.681]    [Pg.746]    [Pg.794]    [Pg.811]    [Pg.813]    [Pg.816]    [Pg.14]    [Pg.187]    [Pg.180]    [Pg.835]    [Pg.523]    [Pg.681]    [Pg.711]    [Pg.116]   
See also in sourсe #XX -- [ Pg.124 , Pg.125 ]




SEARCH



© 2024 chempedia.info