Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyl hydrazines, reduction

The reduction of acyl hydrazines has been investigated very little. Polarography of 4-pyridine carboxylic acid hydrazide in acid and neutral solution shows that it is reduced in two, two-electrons steps [141]. The result of controlled potential electrolysis is cleavage of the N-N bond to form 4-pyridine-carboxamide, which then undergoes reduction to the aldehyde in the second step. Other hydrazides of heterocyclic carboxylic acids behave analogously. [Pg.466]

This section focuses on inhibitors that are transformed by P450 enzymes into metabolic intermediate (MI) products that coordinate so tightly to the heme iron atom that they can be displaced only under unique experimental conditions. The two major classes of these inhibitors are compounds with a dioxymethylene function and nitrogen compounds, usually amines that are converted in situ to nitroso metabolites. A related mechanism is also partially responsible for the inhibition of P450 by 1,1-disubstituted hydrazines and acyl hydrazines. The anaerobic reductive coordination of halocarbons to the heme iron atom is discussed in Section 3.4 because the reaction is linked to destruction of the heme. [Pg.263]

Several methods are available to supplement the phenol alkylations described above. Primary alkylphenols can be produced using the more traditional Friedel-Crafts reaction. Thus an -butylphenol can be synthesized direcdy from a butyl haUde, phenol, and mild Lewis acid catalyst. Alternatively, butyryl chloride can be used to acylate phenol producing a butyrophenone. Reduction with hydrazine (a Wolff-Kishner reduction) generates butylphenol. [Pg.59]

With Af-acyl or Af-sulfonyl hydrazines as nucleophiles, Zincke salts serve as sources of iminopyridinium ylides and ylide precursors.Reaction of the nicotinamide-derived Zincke salt 8 with ethyl hydrazino urethane 42 provided salt 43, while the tosyl hydrazine gave ylide 44 (Scheme 8.4.14). ° Benzoyl hydrazines have also been used in reactions with Zincke salts under similar conditions.Af-amino-1,2,3,6-tetrahydropyridine derivatives such as 47 (Scheme 8.4.15), which showed antiinflammatory activity, are also accessible via this route, with borohydride reduction of the initially formed ylide 46. ... [Pg.361]

Condensation of ethyl acetoacetate with phenyl hydrazine gives the pyrazolone, 58. Methylation by means of methyl iodide affords the prototype of this series, antipyrine (59). Reaction of that compound with nitrous acid gives the product of substitution at the only available position, the nitroso derivative (60) reduction affords another antiinflammatory agent, aminopyrine (61). Reductive alkylation of 61 with acetone in the presence of hydrogen and platinum gives isopyrine (62). Acylation of 61 with the acid chloride from nicotinic acid affords nifenazone (63). Acylation of 61 with 2-chloropropionyl chloride gives the amide, 64 displacement of the halogen with dimethylamine leads to aminopropylon (65). ... [Pg.234]

An alternative synthesis from the Glaxo patents involves Fnedel-Crafts acylation of the 3-position of the indole intermediate 22 (Scheme 5) Reaction of hydrazine 10 with (phenylthio)acetaldehyde gave hydrazone 20, which was subjected to the Fischer indole reaction to give 3-thiophenylindole 21. It is noteworthy that this Fischer cyclization took place at room temperature because most require heat. Reductive desulfurization of 21 using Raney nickel provided indole 22. Acylation of the 3-position... [Pg.166]

The lower members of the homologous series of 1. Alcohols 2. Aldehydes 3. Ketones 4. Acids 5. Esters 6. Phenols 7. Anhydrides 8. Amines 9. Nitriles 10. Polyhydroxy phenols 1. Polybasic acids and hydro-oxy acids. 2. Glycols, poly-hydric alcohols, polyhydroxy aldehydes and ketones (sugars) 3. Some amides, ammo acids, di-and polyamino compounds, amino alcohols 4. Sulphonic acids 5. Sulphinic acids 6. Salts 1. Acids 2. Phenols 3. Imides 4. Some primary and secondary nitro compounds oximes 5. Mercaptans and thiophenols 6. Sulphonic acids, sulphinic acids, sulphuric acids, and sul-phonamides 7. Some diketones and (3-keto esters 1. Primary amines 2. Secondary aliphatic and aryl-alkyl amines 3. Aliphatic and some aryl-alkyl tertiary amines 4. Hydrazines 1. Unsaturated hydrocarbons 2. Some poly-alkylated aromatic hydrocarbons 3. Alcohols 4. Aldehydes 5. Ketones 6. Esters 7. Anhydrides 8. Ethers and acetals 9. Lactones 10. Acyl halides 1. Saturated aliphatic hydrocarbons Cyclic paraffin hydrocarbons 3. Aromatic hydrocarbons 4. Halogen derivatives of 1, 2 and 3 5. Diaryl ethers 1. Nitro compounds (tertiary) 2. Amides and derivatives of aldehydes and ketones 3. Nitriles 4. Negatively substituted amines 5. Nitroso, azo, hy-drazo, and other intermediate reduction products of nitro com-pounds 6. Sulphones, sul-phonamides of secondary amines, sulphides, sulphates and other Sulphur compounds... [Pg.1052]

Organic hydrazines or diazanes are substitution products of NH2—NH2 and have many properties similar to those of amines in being basic and forming acyl derivatives as well as undergoing alkylation and condensations with carbonyl compounds (Section 16-4C). Unsymmetrical hydrazines can be prepared by careful reduction of /V-nitrosamines. l,l-Dimethyldiazane is prepared in this way for use as a rocket fuel ... [Pg.1197]

Attempts to synthesize C-terminal peptide aldehydes using other reductive techniques are less successful. 24"29 The reduction of a-amino acid esters with sodium amalgam and lithium aluminum hydride reduction of tosylated a-aminoacyldimethylpyrazoles resulted in poor yields. 26,29 The Rosemond reduction of TV-phthaloyl amino acid chlorides is inconvenient because the aldehyde is sensitive to hydrazine hydrate that is used to remove the phthaloyl group. 27 28 jV -Z-Protected a-aminoacylimidazoles, which are reduced to the corresponding aldehydes using lithium aluminum hydride, are extremely moisture sensitive and readily decomposed. 25 The catalytic reduction of mixed carbonic/carboxylic acid anhydrides, prepared from acylated a-amino acids, leads to poor reproducibility and low yields. 24 The major problems associated with these techniques are overreduction, racemization, and poor yields. [Pg.200]


See other pages where Acyl hydrazines, reduction is mentioned: [Pg.113]    [Pg.662]    [Pg.825]    [Pg.170]    [Pg.545]    [Pg.104]    [Pg.268]    [Pg.286]    [Pg.792]    [Pg.1518]    [Pg.64]    [Pg.252]    [Pg.51]    [Pg.278]    [Pg.1001]    [Pg.1297]    [Pg.29]    [Pg.72]    [Pg.296]    [Pg.610]    [Pg.287]    [Pg.291]    [Pg.299]    [Pg.662]    [Pg.825]    [Pg.274]    [Pg.197]    [Pg.280]    [Pg.211]    [Pg.91]    [Pg.770]    [Pg.287]    [Pg.291]    [Pg.299]    [Pg.582]    [Pg.413]   
See also in sourсe #XX -- [ Pg.466 ]




SEARCH



Acyl hydrazine

Acyl, reduction

Hydrazine reduction

Hydrazines acyl substituted, reduction

Reductive acylation

© 2024 chempedia.info