Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyl-carnitine translocase

Defects of mitochondrial transport interfere with the movement of molecules across the inner mitochondrial membrane, which is tightly regulated by specific translocation systems. The carnitine cycle is shown in Figure 42-2 and is responsible for the translocation of acyl-CoA thioesters from the cytosol into the mitochondrial matrix. The carnitine cycle involves four elements the plasma membrane carnitine transporter system, CPT I, the carnitine-acyl carnitine translocase system in the inner mitochondrial membrane and CPT II. Genetic defects have been described for each of these four steps, as discussed previously [4,8,9]. [Pg.708]

The inner mitochondrial membrane is not permeable to long-chain acyl CoA derivatives and so these are transported into the mitochondria as carnitine derivatives by carnitine /acyl carnitine translocase. [Pg.315]

Figure 22.7. Acyl Carnitine Translocase. The entry of acyl carnitine into the mitochondrial matrix is mediated by a translocase. Carnitine returns to the cytosolic side of the inner mitochondrial membrane in exchange for acyl carnitine. Figure 22.7. Acyl Carnitine Translocase. The entry of acyl carnitine into the mitochondrial matrix is mediated by a translocase. Carnitine returns to the cytosolic side of the inner mitochondrial membrane in exchange for acyl carnitine.
The transport is accomplished with the participation of carnitine, which takes up the acyl from acyl-CoA on the outer membrane side. Acylcamitine assisted by carnitine translocase diffuses to the inner side of the membrane to give its acyl to the CoA located in the matrix. The process of reversible acyl transfer between CoA and carnitine on the outer and inner sides of the membrane is effected by the enzyme acyl-CoA-camitine transferase. [Pg.196]

Figure 7.11 Mechanism of transport of long-chain fatty adds across the inner mitochondrial membrane as fatty acyl carnitine. CRT is the abbreviation for carnitine palmitoyl transferase. CPT-I resides on the outer surface of the inner membrane, whereas CPT-II resides on the inner side of the inner membrane of the mitochondria. Transport across the inner membrane is achieved by a carrier protein known as a translocase. FACN - fatty acyl carnitine, CN - carnitine. Despite the name, CRT reacts with long-chain fatty acids other than palmitate. CN is transported out of the mitochondria by the same translocase. Figure 7.11 Mechanism of transport of long-chain fatty adds across the inner mitochondrial membrane as fatty acyl carnitine. CRT is the abbreviation for carnitine palmitoyl transferase. CPT-I resides on the outer surface of the inner membrane, whereas CPT-II resides on the inner side of the inner membrane of the mitochondria. Transport across the inner membrane is achieved by a carrier protein known as a translocase. FACN - fatty acyl carnitine, CN - carnitine. Despite the name, CRT reacts with long-chain fatty acids other than palmitate. CN is transported out of the mitochondria by the same translocase.
Fatty acyl carnitine is transported via a translocase that transports acylcarnitine into and carnitine out of the mitochondrion (Chapter 7). [Pg.191]

Carnitine acyltransferase I, which is located on the outer mitochondrial membrane, transfers the fatty acyl group from fatty acyl-CoA to the hydroxyl (OH) group of carnitine. The acyl-carnitine then moves across the intermembrane space to a translocase enzyme, which, in turn, moves the acyl-carnitine to carnitine acyltransferase II, which exchanges the carnitine for Coenzyme A. [Pg.11]

Acyl carnitine is then shuttled across the inner mitochondrial membrane by a translocase (Figure 22.8), The acyl group is transferred back to coenzyme... [Pg.623]

A on the matrix side of the membrane. This reaction, which is catalyzed by carnitine acy[transferase II (carnitine palmitoyl transferase II), is simply the reverse of the reaction that takes place in the cytoplasm. The reaction is thermodynamically feasible because of the zwitterionic nature of carnitine The O-acyl link in carnitine has a high group-transfer potential, apparently because, being zwitterions, carnitine and its esters are solvated differently from most other alcohols and their esters. Finally, the translocase returns carnitine to the cytoplasmic side in exchange for an incoming acyl carnitine. [Pg.624]

The answer is b. (Murray, pp 505-626. Scriver, pp 4029-4240. Sack, pp 121-138. Wilson, pp 287-320.) A deficiency in carnitine, carnitine acyl-transferase 1, carnitine acyltransferase 11, or acylcarnitine translocase can lead to an inability to oxidize long-chain fatty acids. This occurs because all of these components are needed to translocate activated long-chain (>10 carbons long) fatty acyl CoA across mitochondrial inner membrane into the matrix where P oxidation takes place. Once long-chain fatty acids are coupled to the sulfur atom of CoA on the outer mitochondrial membrane, they can be transferred to carnitine by the enzyme carnitine acyltransferase I, which is located on the cytosolic side of the inner mitochondrial membrane. Acyl carnitine is transferred across the inner membrane to the matrix surface by translocase. At this point the acyl group is reattached to a CoA sulfhydryl by the carnitine acyltransferase 11 located on the matrix face of the inner mitochondrial membrane. [Pg.295]

The fact that the mitochondrial inner membrane is virtually impermeable to long-chain fatty acyl-CoA, while the fatty acid oxidative machinery is located inside the mitochondrial matrix, a space enclosed by the inner membrane, might create a serious problem for cellular energy production. The problem is solved by the development of a transmembrane carnitine-dependent transport system for the long-chain acyl residue of acyl-CoA. Catalyzed by carnitine acyltransferase I (CAT-I), which is attached to the inner surface of the mitochondrial outer membrane, fatty acyl-CoA is converted to fatty acyl-carnitine by replacing the CoA residue with carnitine (Figure 3). Fatty acyl-carnitine is transported across the mitochondrial inner membrane in exchange for a molecule of free carnitine by carnitine-acylcarnitine translocase. After arrival in the mitochondrial matrix, fatty acyl-carnitine is converted back to acyl-CoA by carnitine acyltransferase II (CAT-II), an enzyme located on the inner surface of the mitochondrial inner membrane. [Pg.64]

Carnitine is linked to acyl groups transported into the mitochondria for oxidation (Figure 18.15). Acyl-CoAs in the cytoplasm are converted to acyl-camitine derviatives by action of carnitine acyltransferase I on the outer portion of the mitochondrial inner membrane. A translocase carries the acyl-carnitine into the mitochondria. Once inside the mitochondrial matrix, carnitine is replaced on the acyl group by CoASH. The acyl-CoA then is free to go through oxidation or elongation. [Pg.899]

A translocase carries the acyl-carnitine into the mitochondria. Once inside the mitochondrial matrix, carnitine is replaced on the acyl group by CoASH in a reaction catalyzed by carnitine acyltransferase II. [Pg.902]

Within the peroxisome, the acetyl groups can be transferred from CoA to carnitine by an acetylcarnitine transferase, or they can enter the cytosol. A similar reaction converts medium-chain-length acyl CoAs and the short-chain butyryl CoA to acyl carnitine derivatives. These acylcarnitines diffuse from the peroxisome to the mitochondria, pass through the outer mitochondrial membrane, and are transported through the inner mitochondrial membrane via the carnitine translocase system. [Pg.429]

One of the functions of hepatic P-oxidation is to provide ketone bodies, acetoac-etate and p-hydroxybutyrate, to the peripheral circulation. These can then be utilized by peripheral tissues such as brain and heart. Beta-oxidation itself produces acetyl-CoA which then has three possible fates entry to the Krebs cycle via citrate S5mthase keto-genesis or transesterification to acetyl-carnitine by the action of carnitine acetyltrans-ferase (CAT). Intramitochondrial acetyl-carnitine then equilibrates with plasma via the carnitine acyl-camitine translocase and presumably via the plasma membrane carnitine transporter. Human studies have shown that acetyl-carnitine may provide up to 5% of the circulating carbon product from fatty acids and can be taker and utilized by muscle and possibly brain." In addition, acyl-camitines are of important with regard to the diagnosis of inborn errors of P- oxidation. For these reasons, we wished to examine the production of acetyl-carnitine and other acyl-camitine esters by neonatal rat hepatocytes. [Pg.155]

Carnitine serves as a cofactor for several enzymes, including carnitine translo-case and acyl carnitine transferases I and II, which are essential for the movement of activated long-chain fatty acids from the cytoplasm into the mitochondria (Figure 11.2). The translocation of fatty acids (FAs) is critical for the genaation of adenosine triphosphate (ATP) within skeletal muscle, via 3-oxidation. These activated FAs become esterified to acylcamitines with carnitine via camitine-acyl-transferase I (CAT I) in the outer mitochondrial membrane. Acylcamitines can easily permeate the membrane of the mitochondria and are translocated across the membrane by carnitine translocase. Carnitine s actions are not yet complete because the mitochondrion has two membranes to cross thus, through the action of CAT II, the acylcar-nitines are converted back to acyl-CoA and carnitine. Acyl-CoA can be used to generate ATP via 3-oxidation, Krebs cycle, and the electron transport chain. Carnitine is recycled to the cytoplasm for fumre use. [Pg.202]

Carnitine-acylcarnitine translocase (CACT), located in the inner mitochondrial membrane, carries the fatty acyl-carnitine inside the mitochondrion in exchange for a free carnitine molecule. CPT2, located inside the mitochondrion, then catalyzes the reversal of the CPTl reaction. Thus, the concerted actions of CPTl, CACT, and CPT2 effectively translocate fatty acyl-CoA across the inner mitochondrial membrane. [Pg.153]

Carnitine (p-hydroxy-y-trimethylammonium butyrate), (CHjljN"—CH2—CH(OH)—CH2—COO , is widely distributed and is particularly abundant in muscle. Long-chain acyl-CoA (or FFA) will not penetrate the inner membrane of mitochondria. However, carnitine palmitoyltransferase-I, present in the outer mitochondrial membrane, converts long-chain acyl-CoA to acylcarnitine, which is able to penetrate the inner membrane and gain access to the P-oxidation system of enzymes (Figure 22-1). Carnitine-acylcar-nitine translocase acts as an inner membrane exchange transporter. Acylcarnitine is transported in, coupled with the transport out of one molecule of carnitine. The acylcarnitine then reacts with CoA, cat-... [Pg.180]

At this point, the acyl-CoA is still in the cytosol of the muscle cell. Entry of the acyl-CoA into the mitochondrial matrix requires two translocase enzymes, carnitine acyl transferase I and carnitine acyl transferase II (CAT I and CAT II), and a carrier molecule called carnitine the carnitine shuttles between the two membranes. The process of transporting fatty acyl-CoA into mitochondria is shown in Figure 7.15. [Pg.251]

Under physiologic conditions, carnitine is primarily required to shuttle long-chain fatty acids across the inner mitochondrial membrane for FAO and products of peroxisomal /1-oxidation to the mitochondria for further metabolism in the citric acid cycle [40, 43]. Acylcarnitines are formed by conjugating acyl-CoA moieties to carnitine, which in the case of activated long-chain fatty acids is accomplished by CPT type I (CPT-I) [8, 44]. The acyl-group of the activated fatty acid (fatty acyl-CoA) is transferred by CPT-I from the sulfur atom of CoA to the hydroxyl group of carnitine (Fig. 3.2.1). Carnitine acylcarnitine translocase (CACT) then transfers the long-chain acylcarnitines across the inner mitochondrial membrane, where CPT-II reverses the action of CPT-I by the formation of acyl-CoA and release of free un-esterified carnitine. [Pg.172]

A specific transport protein, the carnitine-acylcarnitine translocase, moves the fatty acylcarnitine into the mitochondrial matrix while returning carnitine from the matrix to the cytoplasm. Once inside the mitochondria, another enzyme, carnitine palmitoyltransferase II (CPT II), located on the matrix side of the mitochondrial inner membrane, catalyzes the reconversion of fatty acylcarnitine to fatty acyl-CoA. Intramitochondrial fatty acyl-CoA then undergoes (3-oxidation to generate acetyl-CoA.Acetyl-CoA can enter the Kreb s cycle for complete oxidation or, in the liver, be used for the synthesis of acetoacetate and P-hydroxybutyrate (ketone bodies). [Pg.103]

Figure 9-1- Role of carnitine in fatty acid oxidation. Long-chain fatty acids are activated as the thioester of CoA on the cytoplasmic side of the mitochondrial membrane. The fatty acyl group is then transferred to form the corresponding carnitine ester in a reaction catalyzed by carnitine palmitoyltransferase I (CPT ]) The acylcarnitine then enters the mitochondrial matrix in exchange for carnitine via the carnitine-acylcarnitine translocase. The acyl group is transferred back to CoA in the matrix by carnitine palmitoyltransferase II (CPT II). The intramitochondrial acyl-CoA can then undergo P-oxidation. Figure 9-1- Role of carnitine in fatty acid oxidation. Long-chain fatty acids are activated as the thioester of CoA on the cytoplasmic side of the mitochondrial membrane. The fatty acyl group is then transferred to form the corresponding carnitine ester in a reaction catalyzed by carnitine palmitoyltransferase I (CPT ]) The acylcarnitine then enters the mitochondrial matrix in exchange for carnitine via the carnitine-acylcarnitine translocase. The acyl group is transferred back to CoA in the matrix by carnitine palmitoyltransferase II (CPT II). The intramitochondrial acyl-CoA can then undergo P-oxidation.
A number of diseases have been traced to a deficiency of carnitine, the transferase or the translocase. The symptoms of carnitine deficiency range from mild muscle cramping to severe weakness and even death. The muscle, kidney, and heart are the tissues primarily affected. Muscle weakness during prolonged exercise is an important characteristic of a deficiency of carnitine acyl transferases because muscle relies on fatty acids as a long-term source of energy. Medium-chain (Cg-Cjo) fatty acids, which do not require carnitine to enter the mitochondria, are oxidized normally in these patients. These diseases illustrate that the impaired flow of a metabolite from one compartment of a cell to another can lead to a pathological condition. [Pg.905]

Role of carnitine in transport of fatty acids into the mitochondrial matrix. Entry of acyl-camitine is linked to the exit of carnitine, both mediated by a translocase. [Pg.367]


See other pages where Acyl-carnitine translocase is mentioned: [Pg.623]    [Pg.646]    [Pg.661]    [Pg.623]    [Pg.646]    [Pg.661]    [Pg.109]    [Pg.352]    [Pg.905]    [Pg.423]    [Pg.610]    [Pg.783]    [Pg.698]    [Pg.174]    [Pg.189]    [Pg.316]    [Pg.885]    [Pg.2231]    [Pg.624]   


SEARCH



Acyl-carnitines

Carnitin

Carnitine

Carnitine translocase

Translocases

© 2024 chempedia.info