Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Active-carrier transport

What is the Henderson-Hasselbach equation and why is it an important consideration if a drug crossed membranes by simple passive diffusion Why is it far less important if a drug utilizes either facilitated transport or active transport carrier systems to cross membranes ... [Pg.33]

Recently, Shinkai and Manabe achieved the active transport of K+ using a new type of carrier 39 derived from diaza crown ether43, 44). The ionophore forms the zwitter-ionic species 39b, which is most lipophilic among other species (39a, 39c), at about neutral pH region, and it acts as effective ion carrier in the active transport... [Pg.47]

A certain crown ether having additional coordination sites for a trasition metal cation (71) changes the transport property for alkali metal cations when it complexes with the transition metal cation 76) (Fig. 13). The fact that a carrier can be developed which has a reversible complexation property for a transition metal cation strongly suggests that this type of ionophore can be applied to the active transport system. [Pg.57]

In eukaryotes there is also evidence that Met(O) is actively transported. It has been reported that Met(O) is transported into purified rabbit intestinal and renal brush border membrane vesicles by a Met-dependent mechanism and accumulates inside the vesicles against a concentration gradient102. In both types of vesicles the rate of transport is increased with increasing concentrations of Na+ in the incubation medium. The effect of the Na+ is to increase the affinity of Met(O) for the carrier. Similar to that found in the bacterial system, the presence of Met and other amino acids in the incubation medium decreased the transport of Met(O). These results suggest that Met(O) is not transported by a unique carrier. [Pg.859]

Snyder NJ, Tabas LB, Berry DM, Duckworth DC, Spry DO and Dantzig AH. Structure-activity relationship of carbacephalosporins and cephalosporins antibacterial activity and interaction with the intestinal proton-dependent dipeptide transport carrier of Caco-2 cells. Antimicrob Agents Chemother 1997 41 1649-57. [Pg.511]

Molecules that cannot pass freely through the lipid bilayer membrane by themselves do so in association with carrier proteins. This involves two processes— facilitated dififrision and active transport—and highly specific transport systems. [Pg.426]

Facilitated diffusion and active transport share many features. Both appear to involve carrier proteins, and both show specificity for ions, sugars, and amino acids. [Pg.426]

Mutations in bacteria and mammalian cells (including some that result in human disease) have supported these conclusions. Facilitated diffusion and active transport resemble a substrate-enzyme reaction except that no covalent interaction occurs. These points of resemblance are as follows (1) There is a specific binding site for the solute. (2) The carrier is saturable, so it has a maximum rate of transport (V Figure 41-11). (3) There is a binding constant (Al) ) for the solute, and... [Pg.426]

The history of observations of efflux associated with PTS carriers is nearly as old as PTS itself. Gachelin [82] reported that A -ethylmaleimide inactivation of a-methyl-glucoside transport and phosphorylation in E. coli was accompanied by the appearance of a facilitated diffusion movement of both a-methylglucoside and glucose in both directions, uptake and efflux. His results could not discriminate, however, between one carrier operating in two different modes, active transport for the native carrier and facilitated diffusion for the alkylated carrier, or two distinct carriers. Haguenauer and Kepes [83] went on to show that alkylation of the carrier was not even necessary to achieve efflux NaF treatment which inhibits P-enolpyruvate synthesis was sufficient but this study did not address the question of one carrier or two. [Pg.156]

It is clearly impossible to give a comprehensive overview of this rapidly expanding field. I have chosen a few experts in their field to discuss one (class of) transport protein(s) in detail. In the first five chapters pumps involved in primary active transport are discussed. These proteins use direct chemical energy, mostly ATP, to drive transport. The next three chapters describe carriers which either transport metabolites passively or by secondary active transport. In the last three chapters channels are described which allow selective passive transport of particular ions. The progress in the latter field would be unthinkable without the development of the patch clamp technique. The combination of this technique with molecular biological approaches has yielded very detailed information of the structure-function relationship of these channels. [Pg.352]

Both secondary active transport and positive cooperativity effects enhance carrier-mediated solute flux, in contrast to negative cooperativity and inhibition phenomena, which depress this flux. Most secondary active transport in intestinal epithelia is driven by transmembrane ion gradients in which an inorganic cation is cotransported with the solute (usually a nutrient or inorganic anion). Carriers which translocate more than one solute species in the same direction across the membrane are referred to as cotransporters. Carriers which translocate different solutes in opposite directions across the membrane are called countertransporters or exchangers (Figs. 10 and 11). [Pg.186]

Figure 1 General pathways through which molecules can actively or passively cross a monolayer of cells. (A) Endocytosis of solutes and fusion of the membrane vesicle with the opposite plasma membrane in an active process called transcytosis. (B) Similar to A, but the solute associates with the membrane via specific (e.g., receptor) or nonspecific (e.g., charge) interactions. (C) Passive diffusion between the cells through the paracellular space. (C, C") Passive diffusion (C ) through the cell membranes and cytoplasm or (C") via partitioning into and lateral diffusion within the cell membrane. (D) Active or carrier-mediated transport of an otherwise poorly membrane permeable solute into and/or out of a cellular barrier. Figure 1 General pathways through which molecules can actively or passively cross a monolayer of cells. (A) Endocytosis of solutes and fusion of the membrane vesicle with the opposite plasma membrane in an active process called transcytosis. (B) Similar to A, but the solute associates with the membrane via specific (e.g., receptor) or nonspecific (e.g., charge) interactions. (C) Passive diffusion between the cells through the paracellular space. (C, C") Passive diffusion (C ) through the cell membranes and cytoplasm or (C") via partitioning into and lateral diffusion within the cell membrane. (D) Active or carrier-mediated transport of an otherwise poorly membrane permeable solute into and/or out of a cellular barrier.
Glucose and galactose enter the absorptive cells by way of secondary active transport. Cotransport carrier molecules associated with the disaccharidases in the brush border transport the monosaccharide and a Na+ ion from the lumen of the small intestine into the absorptive cell. This process is referred to as "secondary" because the cotransport carriers operate passively and do not require energy. However, they do require a concentration gradient for the transport of Na+ ions into the cell. This gradient is established by the active transport of Na+ ions out of the absorptive cell at the basolateral surface. Fructose enters the absorptive cells by way of facilitated diffusion. All monosaccharide molecules exit the absorptive cells by way of facilitated diffusion and enter the blood capillaries. [Pg.300]

Many neurotransmitters are inactivated by a combination of enzymic and non-enzymic methods. The monoamines - dopamine, noradrenaline and serotonin (5-HT) - are actively transported back from the synaptic cleft into the cytoplasm of the presynaptic neuron. This process utilises specialised proteins called transporters, or carriers. The monoamine binds to the transporter and is then carried across the plasma membrane it is thus transported back into the cellular cytoplasm. A number of psychotropic drugs selectively or non-selectively inhibit this reuptake process. They compete with the monoamines for the available binding sites on the transporter, so slowing the removal of the neurotransmitter from the synaptic cleft. The overall result is prolonged stimulation of the receptor. The tricyclic antidepressant imipramine inhibits the transport of both noradrenaline and 5-HT. While the selective noradrenaline reuptake inhibitor reboxetine and the selective serotonin reuptake inhibitor fluoxetine block the noradrenaline transporter (NAT) and serotonin transporter (SERT), respectively. Cocaine non-selectively blocks both the NAT and dopamine transporter (DAT) whereas the smoking cessation facilitator and antidepressant bupropion is a more selective DAT inhibitor. [Pg.34]


See other pages where Active-carrier transport is mentioned: [Pg.360]    [Pg.36]    [Pg.22]    [Pg.148]    [Pg.361]    [Pg.207]    [Pg.146]    [Pg.360]    [Pg.36]    [Pg.22]    [Pg.148]    [Pg.361]    [Pg.207]    [Pg.146]    [Pg.44]    [Pg.49]    [Pg.50]    [Pg.52]    [Pg.52]    [Pg.56]    [Pg.165]    [Pg.539]    [Pg.82]    [Pg.424]    [Pg.475]    [Pg.477]    [Pg.1]    [Pg.155]    [Pg.344]    [Pg.727]    [Pg.804]    [Pg.122]    [Pg.435]    [Pg.445]    [Pg.446]    [Pg.536]    [Pg.565]    [Pg.254]    [Pg.115]    [Pg.100]   
See also in sourсe #XX -- [ Pg.149 , Pg.152 ]




SEARCH



Activated transport

Active transporter

Carrier-mediated transport active

Carriers carrier transport

Passive diffusion active/carrier-mediated transport

© 2024 chempedia.info