Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Active sites single atom

Figure 8.39 shows some results of EXAFS following absorption by iron atoms in proteins with three prototype iron-sulphur active sites. In the example in Figure 8.39(a) application of a 0.9-3.5 A filter window before Fourier retransformation shows a single wave resulting... [Pg.331]

The typical industrial catalyst has both microscopic and macroscopic regions with different compositions and stmctures the surfaces of industrial catalysts are much more complex than those of the single crystals of metal investigated in ultrahigh vacuum experiments. Because surfaces of industrial catalysts are very difficult to characterize precisely and catalytic properties are sensitive to small stmctural details, it is usually not possible to identify the specific combinations of atoms on a surface, called catalytic sites or active sites, that are responsible for catalysis. Experiments with catalyst poisons, substances that bond strongly with catalyst surfaces and deactivate them, have shown that the catalytic sites are usually a small fraction of the catalyst surface. Most models of catalytic sites rest on rather shaky foundations. [Pg.171]

Adsorbed molecules are more strongly held at the sites where the weakest metal-metal bonding is to be found, and these conespond to the active sites of Langmuir. A demonstration of this effect was found in smdies of the adsorption of H2S from a H2S/H2 mixture on a single crystal of copper of which die separate crystal faces had been polished and exposed to die gas. The formation of copper sulphide first occuiTed on die [100] and [110] planes at a lower H2S partial pressure dran on die more densely packed [111] face. Thus die metal atoms which are less strongly bonded to odrer metal atoms can bond more strongly to die adsorbed species from die gas phase. [Pg.123]

We can think of a heterogeneous catalyst as a collection of active sites (denoted by ) located at a surface. The total number of sites is constant and equal to N (if there is any chance of confusion with N atoms, we will use the symbol N ). The adsorption of the reactant is formally a reaction with an empty site to give an intermediate I (or more conveniently R if we explicitly want to express that it is the reactant R sitting on an adsorption site). All sites are equivalent and each can be occupied by a single species only. We will use the symbol 6r to indicate the fraction of occupied sites occupied by species R, making N6r the number of occupied sites. Hence, the fraction of unoccupied sites available for reaction will be 1 - 0r The following equations represent the catalytic cycle of Fig. 2.7 ... [Pg.49]

In this exercise we shall estimate the influence of transport limitations when testing an ammonia catalyst such as that described in Exercise 5.1 by estimating the effectiveness factor e. We are aware that the radius of the catalyst particles is essential so the fused and reduced catalyst is crushed into small particles. A fraction with a narrow distribution of = 0.2 mm is used for the experiment. We shall assume that the particles are ideally spherical. The effective diffusion constant is not easily accessible but we assume that it is approximately a factor of 100 lower than the free diffusion, which is in the proximity of 0.4 cm s . A test is then made with a stoichiometric mixture of N2/H2 at 4 bar under the assumption that the process is far from equilibrium and first order in nitrogen. The reaction is planned to run at 600 K, and from fundamental studies on a single crystal the TOP is roughly 0.05 per iron atom in the surface. From Exercise 5.1 we utilize that 1 g of reduced catalyst has a volume of 0.2 cm g , that the pore volume constitutes 0.1 cm g and that the total surface area, which we will assume is the pore area, is 29 m g , and that of this is the 18 m g- is the pure iron Fe(lOO) surface. Note that there is some dispute as to which are the active sites on iron (a dispute that we disregard here). [Pg.430]

By single-site catalysts we mean catalysts where the breaking and formation of chemical bonds occurs at isolated active centers whose chemical activity is dominated by the electronic properties of a single atomic species or of a small cluster of atoms that can act in an independent way with respect to others. [Pg.38]

The activated carbon apparently has enough nucleation sites or the correct functionalized surface sites to trap some of these single atoms before they can be incorporated into nanoparticles. [Pg.350]

Metalloproteins fall into three main structure categories depending on whether the active site consists of a single coordinated metal atom, a metal-porphyrin unit, or metal atoms in a cluster arrangement. In the context of electron-transfer metalloproteins, the blue Cu proteins, cytochromes, and ferre-doxins respectively are examples of these different structure types. Attention will be confined here mainly to a discussion of the reactivity of the blue Cu protein plastocyanin. Reactions of cytochrome c are also considered, with brief mention of the [2Fe-2S] ferredoxin, and high potential Fe/S protein [HIPIP]. [Pg.172]

A question which has occupied many catalytic scientists is whether the active site in methanol synthesis consists exclusively of reduced copper atoms or contains copper ions [57,58]. The results of Szanyi and Goodman suggest that ions may be involved, as the preoxidized surface is more active than the initially reduced one. However, the activity of these single crystal surfaces expressed in turn over frequencies (i.e. the activity per Cu atom at the surface) is a few orders of magnitude lower than those of the commercial Cu/ZnO/ALO catalyst, indicating that support-induced effects play a role. Stabilization of ionic copper sites is a likely possibility. Returning to Auger spectroscopy, Fig. 3.26 illustrates how many surface scientists use the technique in a qualitative way to monitor the surface composition. [Pg.89]


See other pages where Active sites single atom is mentioned: [Pg.251]    [Pg.714]    [Pg.938]    [Pg.124]    [Pg.6]    [Pg.260]    [Pg.335]    [Pg.212]    [Pg.520]    [Pg.118]    [Pg.179]    [Pg.277]    [Pg.120]    [Pg.127]    [Pg.268]    [Pg.64]    [Pg.182]    [Pg.8]    [Pg.8]    [Pg.13]    [Pg.114]    [Pg.84]    [Pg.76]    [Pg.17]    [Pg.126]    [Pg.133]    [Pg.317]    [Pg.111]    [Pg.963]    [Pg.65]    [Pg.61]    [Pg.714]    [Pg.124]    [Pg.122]    [Pg.166]    [Pg.216]    [Pg.209]    [Pg.104]    [Pg.39]    [Pg.282]    [Pg.207]   
See also in sourсe #XX -- [ Pg.29 , Pg.31 ]




SEARCH



Atomic sites

Single atom

© 2024 chempedia.info