Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activation parameters interpretations

An interpretation of activation parameters has led to the conclusion that the bromination transition state resembles a three-membered ring, even in the case of alkenes that eventually react via open carbocation intermediates. It was foimd that for cis trans pairs of alkenes tiie difference in enthalpy at the transition state for bromination was greater than the enthalpy difference for the isomeric alkenes, as shown in Fig. 6.2. This... [Pg.363]

The values of A and E provide a full description of the kinetic data, but it may be desirable, for mechanistic interpretation, to express the results in terms of the activation parameters A// and A5. We developed equations in Section 5.2 for this purpose for convenience these are repeated here ... [Pg.246]

The second use of activation parameters is as criteria for mechanistic interpretation. In this application the activation parameters of a single reaction are, by themselves, of little use such quantities acquire meaning primarily by comparison with other values. Thus, the trend of activation parameters in a reaction series may be suggestive. For example, many linear correlations have been reported between AT/ and A5 within a reaction series such behavior is called an isokinetic relationship, and its significance is discussed in Chapter 7. In Section 5.3 we commented on the use of AS to determine the molecularity of a reaction. Carpenter has described examples of mechanistic deductions from activation parameters of organic reactions. [Pg.261]

Interpretations may be ephemeral, but experimental data are permanent. To conserve space, the collection of kinetic data presented here is confined to studies which include the determination of at least one activation parameter. For kinetic studies reporting rate constants at a single temperature the following references should be consulted 21, 23, 27, 29(b), 30, 31, 33-39, 44, 46, 48, 52, 81, 86, 92, 96, 99, 141, and 142, as well as some of the tables in this review. Among the excluded studies, those involving catalytic phenomena are especially worthy of mention. [Pg.359]

The experimental side of the subject explores the effects of certain variables on the rate constant, especially temperature and pressure. Their variations provide values of the activation parameters. They are the previously mentioned energy of activation, entropy of activation, and so forth. The chemical interpretations that can be realized from the values of the activation parameters will be explored in general terms, but readers must consult the original literature for information about those chemical systems that particularly interest them. On the theoretical side, there is the tremendously powerful transition state theory (TST). We shall consider its origins and some of its implications. [Pg.155]

Acid-base catalysis, 232-238 Brqnsted equation for, 233-236 general, 233, 237 mechanisms for, 237 specific, 232-233, 237 Activated complex (see Transition state) Activation enthalpy, 10, 156-160 for composite rate constants, 161-164 negative, 161 Activation parameters, 10 chemical interpretation of, 168-169 energy of activation, Ea, 10 enthalpy of activation (A// ), 10, 156-160... [Pg.277]

Changes of activation parameters within a series of related reactions can be used for classification of these series (14, 37, 115). Theoretical interpretation of reactivity should then be somewhat different in each class. In early work, attention was directed to reaction series with constant activation entropy, (34, 35, 38) which were believed to be of prime theoretical significance (16). Later, Blackadder and Hinshelwood distinguished three types (115, 116) ... [Pg.458]

Thermogravimetric analysis (TGA) measures cellulose pyrolytic mass loss rates and activation parameters. The technique is relatively simple, straightforward and fast, but it does have disadvantages. One disadvantage is that determination of the kinetic rate constants from TGA data is dependent on the interpretation/analysis technique used. Another disadvantage of TGA is that the rate of mass loss is probably not equivalent to the cellulose pyrolysis rate. [Pg.335]

Ru(edta)(H20)] reacts very rapidly with nitric oxide (171). Reaction is much more rapid at pH 5 than at low and high pHs. The pH/rate profile for this reaction is very similar to those established earlier for reaction of this ruthenium(III) complex with azide and with dimethylthiourea. Such behavior may be interpreted in terms of the protonation equilibria between [Ru(edtaH)(H20)], [Ru(edta)(H20)], and [Ru(edta)(OH)]2- the [Ru(edta)(H20)] species is always the most reactive. The apparent relative slowness of the reaction of [Ru(edta)(H20)] with nitric oxide in acetate buffer is attributable to rapid formation of less reactive [Ru(edta)(OAc)] [Ru(edta)(H20)] also reacts relatively slowly with nitrite. Laser flash photolysis studies of [Ru(edta)(NO)]-show a complicated kinetic pattern, from which it is possible to extract activation parameters both for dissociation of this complex and for its formation from [Ru(edta)(H20)] . Values of AS = —76 J K-1 mol-1 and A V = —12.8 cm3 mol-1 for the latter are compatible with AS values between —76 and —107 J K-1mol-1 and AV values between —7 and —12 cm3 mol-1 for other complex-formation reactions of [Ru(edta) (H20)]- (168) and with an associative mechanism. In contrast, activation parameters for dissociation of [Ru(edta)(NO)] (AS = —4JK-1mol-1 A V = +10 cm3 mol-1) suggest a dissociative interchange mechanism (172). [Pg.93]

Pseudo-first-order rate constants for carbonylation of [MeIr(CO)2l3]" were obtained from the exponential decay of its high frequency y(CO) band. In PhCl, the reaction rate was found to be independent of CO pressure above a threshold of ca. 3.5 bar. Variable temperature kinetic data (80-122 °C) gave activation parameters AH 152 (+6) kj mol and AS 82 (+17) J mol K The acceleration on addition of methanol is dramatic (e. g. by an estimated factor of 10 at 33 °C for 1% MeOH) and the activation parameters (AH 33 ( 2) kJ mol" and AS -197 (+8) J mol" K at 25% MeOH) are very different. Added iodide salts cause substantial inhibition and the results are interpreted in terms of the mechanism shown in Scheme 3.6 where the alcohol aids dissociation of iodide from [MeIr(CO)2l3] . This enables coordination of CO to give the tricarbonyl, [MeIr(CO)3l2] which undergoes more facile methyl migration (see below). The behavior of the model reaction closely resembles the kinetics of the catalytic carbonylation system. Similar promotion by methanol has also been observed by HP IR for carbonylation of [MeIr(CO)2Cl3] [99]. In the same study it was reported that [MeIr(CO)2Cl3]" reductively eliminates MeCl ca. 30 times slower than elimination of Mel from [MeIr(CO)2l3] (at 93-132 °C in PhCl). [Pg.135]

The effects of the high ionic strength (3) appear to depend rather much on the details of the hydrolytic probe. For example, aqueous rate constants for 4-nitrophenyl 2,2-dichloropropionate 2 decrease as a function of added electrolyte (as typically happens), but the origin of this rate decrease by added electrolytes was interpreted to be different from the rate-retarding effect exerted by micelles based on activation parameter considerations. For another hydrolytic probe, phenyl chloro-formate lb, increasing electrolyte concentrations also decrease the rate of reaction, but this effect is negligible in comparison to the micellar rate effects. " ... [Pg.24]

Although the activation parameters obtained from the thermal decomposition of a great number of diverse dioxetane derivatives have been interpreted on the basis of the biradical mechanism, no general interpretation of the excitation efficiencies has been given on fhe basis of fhis mechanism Furfhermore, most theoretical... [Pg.1227]

By measuring the temperature dependence of kex, activation parameters (Aff and AS ) could be calculated and were reported. However, I am not sure how to physically interpret these numbers. The temperature dependence of rate can be fit to other expressions, and here it is fit to the Marcus equation for nonadiabatic electron transfer in the case of degenerate electron transfer (e.g., AG° = 0)... [Pg.111]

The observed activation parameters are consistent with the interpretation... [Pg.97]

Mechanisms for solid-state reactions of coordination compounds have often been formulated based merely on comparisons of activation parameters within a series of compounds. There are, however, many potential problems associated with the use and interpretation of activation... [Pg.464]

Reactivities and activation parameters for pyrolytic unimolecular first-order elimination reactions of A -acetylurea, A -acetylthiourca, /V,7V -diacetylthiourea and N-acetylthiobenzamide have been interpreted with reference to those for other amide derivatives.55 The first-order rate constants for pyrolysis of RCONHCSNHCe R (R = Me, R = H R = Ph, R = H, 4-N02, 3-C1, 4-C1, 4-Me) have also been measured at 423-500 K and correlated with Hammett [Pg.378]

The relative reactivity, solvent isotope effect (k /k -)) and activation parameters for the acid-catalysed hydration of allylic alcohols CH2=CR—CH2OH (R = H, Me) have been found to be similar to those for other alkenes. Whereas the results can be interpreted in terms of the conventional Ad-E2 mechanism, computed values for the life-time of possible carbocation intermediates suggest another feasible mechanism for CH2=CHCH20H, according to which the nucleophilic attack by the solvent is concerted with protonation55 56. [Pg.1141]


See other pages where Activation parameters interpretations is mentioned: [Pg.514]    [Pg.515]    [Pg.349]    [Pg.331]    [Pg.10]    [Pg.739]    [Pg.739]    [Pg.81]    [Pg.70]    [Pg.89]    [Pg.117]    [Pg.215]    [Pg.40]    [Pg.190]    [Pg.154]    [Pg.171]    [Pg.211]    [Pg.449]    [Pg.14]    [Pg.40]    [Pg.119]    [Pg.150]    [Pg.218]    [Pg.220]    [Pg.67]    [Pg.420]    [Pg.499]    [Pg.469]    [Pg.514]    [Pg.515]    [Pg.351]   
See also in sourсe #XX -- [ Pg.372 ]




SEARCH



Activation parameters

Activity parameters

© 2024 chempedia.info