Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activation energy exchange reactions

ATPase activity and exchange reactions, such as P,-ATP exchange, are partial reactions of oxidative and photosynthetic phosphorylation. These reactions have been described in detail and have been considered to consist of a series of reversible chemical reactions forming high energy intermediates (X-Y and X-P) [104-106]. In... [Pg.160]

The great advantage of the study of exchange reactions of isotopic molecules on catalysts is that only one molecular species is involved both as reactants and products. One is freed from the restrictions imposed with two reactants where the displacement of one reactant by another or by a reaction product must steadily be taken into consideration. The catalysts which reveal heterogeneity by desorption-readsorption studies should show the same variation in activation energy of reaction with temperature that Taylor and Smith found with zinc oxide in the hydrogen-deuterium reaction. Research in this direction is under way. [Pg.24]

Dissolution -minerogenesis Solubility - C . Equilibrium constants - K. . Solubility product - L. Rate constant- k, r,j Activation energy - , Max Reaction rate - r, Exchange rate- r (r,s, , Effective — r max,s, /... [Pg.346]

In theory two carbanions, (189) and (190), can be formed by deprotonation of 3,5-dimethylisoxazole with a strong base. On the basis of MINDO/2 calculations for these two carbanions, the heat of formation of (189) is calculated to be about 33 kJ moF smaller than that of (190), and the carbanion (189) is thermodynamically more stable than the carbanion (190). The calculation is supported by the deuterium exchange reaction of 3,5-dimethylisoxazole with sodium methoxide in deuterated methanol. The rate of deuterium exchange of the 5-methyl protons is about 280 times faster than that of the 3-methyl protons (AAF = 13.0 kJ moF at room temperature) and its activation energy is about 121 kJ moF These results indicate that the methyl groups of 3,5-dimethylisoxazole are much less reactive than the methyl group of 2-methylpyridine and 2-methylquinoline, whose activation energies under the same reaction conditions were reported to be 105 and 88 kJ moF respectively (79H(12)1343). [Pg.49]

In view of the enthalpy and activation energy (see Section II, B, 1) of the decomposition of arylpentazoles the activation energy for the reversal of the decomposition, the 1,3-addition of elementary nitrogen to arylazides, can be estimated to be 25-30 kcal/mole, an amount which does not exclude the reaction. To ascertain whether the decomposition of arylpentazoles is a reversible reaction, p-ethoxyphenylazide-[j8-N ] (see Section II, B, 3) adsorbed on charcoal was exposed to unlabeled nitrogen (45-50°, 380 atm, 100 hr), but the anticipated exchange of between the reactants was not detected. ... [Pg.382]

J mol ). This is additional evidence in favor of rate limitation by inner diffusion. However, the same reaction in the presence of Dowex-50, which has a more open three-dimensional network, gave an activation energy of 44800 J mol , and closely similar values were obtained for the hydrolysis of ethyl acetate [29] and dimethyl seb-acate [30]. The activation energy for the hydrolysis of ethyl acetate on a macroreticular sulphonated cationic exchanger [93] is 3566 J mol . For the hydrolysis of ethyl formate in a binary system, the isocomposition activation energy (Ec) [28,92] tends to decrease as the solvent content increases, while for solutions of the same dielectric constant, the iso-dielectric activation energy (Ed) increases as the dielectric constant of the solvent increases (Table 6). [Pg.779]

We conclude with a consideration of a few other cobalt self-exchange reactions. The reaction in Eq. (9.33) is faster than that involving the ammine complexes (Eq. 9.30) because the water is a weaker-field ligand than ammonia. Thus, the activation energy for the formation of the electronically excited states is lower, as is the change in Co-ligand distances in the two oxidation states. [Pg.193]

It can be difficult to estimate theoretically the bond lengths and vibrational frequencies for the activated complex and the energy barrier for its formation. It is of interest to assess how the uncertainty in these parameters affect the rate constant predicted from transition state theory (TST). For the exchange reaction... [Pg.442]

Keenan has made an investigation of the exchange reaction between Pu(IV) and Pu(in) in perchlorate media. The isotopic method was used with an a energy analyser to separate the tracer activity ( Pu) from that normally present from the major constituent ( Pu). Tributylphosphate extraction of the Pu(IV) formed the basis of the separation method. It was shown that the rate law has the approximate form... [Pg.138]

The reaction was followed by means of the strong absorption of the Os(II) complex at 480 m/i. Unlike the Tl(riI) + Fe(II) system, there is a slight increase in rate as the hydrogen-ion concentration is increased. The kinetic data were interpreted on the basis that both Tl and TIOH react with Os(bipy)3 (with rate coefficients and respectively). At 24.5 °C and ju = 2.99 M, kj = 36.0 l.mole. see and= 14.7 l.mole sec corresponding activation energies are 6.90 and 11.5 kcal.mole" The latter values are considerably smaller than those for the T1(III) + T1(I) exchange and for the Tl(III)- -Fe(II) reaction . On the other hand, all three reactions are subject to retardation by Cl ions. [Pg.235]

This study presents kinetic data obtained with a microreactor set-up both at atmospheric pressure and at high pressures up to 50 bar as a function of temperature and of the partial pressures from which power-law expressions and apparent activation energies are derived. An additional microreactor set-up equipped with a calibrated mass spectrometer was used for the isotopic exchange reaction (DER) N2 + N2 = 2 N2 and the transient kinetic experiments. The transient experiments comprised the temperature-programmed desorption (TPD) of N2 and H2. Furthermore, the interaction of N2 with Ru surfaces was monitored by means of temperature-programmed adsorption (TPA) using a dilute mixture of N2 in He. The kinetic data set is intended to serve as basis for a detailed microkinetic analysis of NH3 synthesis kinetics [10] following the concepts by Dumesic et al. [11]. [Pg.318]


See other pages where Activation energy exchange reactions is mentioned: [Pg.226]    [Pg.89]    [Pg.13]    [Pg.59]    [Pg.583]    [Pg.305]    [Pg.195]    [Pg.145]    [Pg.443]    [Pg.353]    [Pg.473]    [Pg.137]    [Pg.572]    [Pg.325]    [Pg.326]    [Pg.289]    [Pg.830]    [Pg.889]    [Pg.352]    [Pg.2577]    [Pg.196]    [Pg.197]    [Pg.200]    [Pg.776]    [Pg.130]    [Pg.195]    [Pg.224]    [Pg.323]    [Pg.192]    [Pg.193]    [Pg.389]    [Pg.322]    [Pg.114]    [Pg.119]    [Pg.247]    [Pg.465]    [Pg.37]    [Pg.286]    [Pg.182]    [Pg.142]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Energy exchanger

Energy exchanging

Exchange energy

Exchange, energy reactions

© 2024 chempedia.info