Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activation barrier bond energies

FIGURE 13.30 A reaction profile for an exothermic reaction. In the activated complex theory of reaction rates, it is supposed that the potential energy (the energy due to position) increases as the reactant molecules approach each other and reaches a maximum as they form an activated complex. It then decreases as the atoms rearrange into the bonding pattern characteristic of the products and these products separate. Only molecules with enough energy can cross the activation barrier and react to form products. [Pg.684]

Whereas the adsorption energies of the adsorbed molecules and fragment atoms only slightly change, the activation barriers at step sites are substantially reduced compared to those at the terrace. Different from activation of a-type bonds, activation of tt bonds at different sites proceeds through elementary reaction steps for which there is no relation between reaction energy and activation barrier. The activation barrier for the forward dissociation barrier as weU as for the reverse recombination barrier is reduced for step-edge sites. [Pg.22]

DFT-GGA calculations are very useful for investigating plausible reaction pathways of various molecules on surfaces. The method provides detailed information on the bonding geometry, on bond energies as well on activation barriers, and transition states which are otherwise not accessible. Typical accuracies in such numbers amount to a few tenths of an eV, making the method particularly useful to investigate trends. [Pg.266]

From the given Hamiltonian, adiabatic potential energy surfaces for the reaction can be calculated numerically [Santos and Schmickler 2007a, b, c Santos and Schmickler 2006] they depend on the solvent coordinate q and the bond distance r, measured with respect to its equilibrium value. A typical example is shown in Fig. 2.16a (Plate 2.4) it refers to a reduction reaction at the equilibrium potential in the absence of a J-band (A = 0). The stable molecule correspond to the valley centered at g = 0, r = 0, and the two separated ions correspond to the trough seen for larger r and centered at q = 2. The two regions are separated by an activation barrier, which the system has to overcome. [Pg.50]

The solution phase is modeled explicitly by the sequential addition of solution molecules in order to completely fill the vacuum region that separates repeated metal slabs (Fig. 4.2a) up to the known density of the solution. The inclusion of explicit solvent molecules allow us to directly follow the influence of specific intermolecular interactions (e.g., hydrogen bonding in aqueous systems or electron polarization of the metal surface) that influence the binding energies of different intermediates and the reaction energies and activation barriers for specific elementary steps. [Pg.97]

The results here clearly demonstrate some of the important differences between reactions in the vapor phase and those in the aqueous phase. Water solvates the ions that form and thus enhances the heterolytic bond activation processes. This leads to more significant stabilization of the charged transition and product states over the neutral reactant state. The changes that result in the overall energies and the activation barriers of particular elementary steps can also act to alter the reaction selectivity and change the mechanism. [Pg.115]

In the presence of adsorbed atomic oxygen, the activation barrier is substantially lowered to 132 kJ mol-1, the reaction is endothermic at 48kJmol 1, but the high activation energy suggests that the N-H bond would not be broken. However, at high temperatures it might be achieved. [Pg.98]

As with the Marcus-Hush model of outer-sphere electron transfers, the activation free energy, AG, is a quadratic function of the free energy of the reaction, AG°, as depicted by equation (7), where the intrinsic barrier free energy (equation 8) is the sum of two contributions. One involves the solvent reorganization free energy, 2q, as in the Marcus-Hush model of outer-sphere electron transfer. The other, which represents the contribution of bond breaking, is one-fourth of the bond dissociation energy (BDE). This approach is... [Pg.123]

Essentially, all reactions that require the formation of a chemical bond with an activation energy of around 100 kJ mol-1 are frozen out at the surface of Titan but are considerably faster in the stratosphere, although still rather slow compared with the rates of reaction at 298 K. Chemistry in the atmosphere of Titan will proceed slowly for neutral reactions but faster for ion-molecule reactions and radical-neutral reactions, both of which have low activation barriers. The Arrhenius equation provides the temperature dependence of rates of reactions but we also need to consider the effect of cold temperatures on thermodynamics and in particular equilibrium. [Pg.294]

LH)---H20]+, and [Be(H20)4]2+, stabilize the third and fifth water molecules in the precursor, respectively, by strong hydrogen bonding and have similar activation energies, the impression is gained that the activation barrier depends more on the... [Pg.559]

These results confirm the important role of the force constant of the reacting bonds in the formation of the activation barrier. The activation energies Ee0 for the R + RX reactions can easily be estimated from the empirical formulas [17] (units are given in brackets) ... [Pg.253]

Thus, the radius of the atom carrying the free valence has a substantial influence on the activation barrier to the addition reaction the greater the radius of this atom, the higher the activation energy. Apparently, this effect is due to the repulsion in the transition state, which is due to the interaction between the electron shells of the attacked double bond and the atom that attacks this bond. [Pg.274]

Carbene lv is photolabile, and 400 nm irradiation produces a mixture of products.108 By comparison with calculated IR spectra the major product was identified as cyclopropene 3v. The formation of 3v is irreversible, and it cannot be thermally (by annealing the matrix) nor photochemically converted back to carbene lv. The lv -> 3v rearrangement is calculated (B3LYP/6-31G(d) + ZPE) to be endothermic by only 5.4 kcal/mol with an activation barrier of 18.2 kcal/mol. Due to the two Si-C bonds in the five-membered ring of 3v this cyclopropene is less strained than 3s, which is reflected by the smaller destabilization relative to carbene lv. The thermal energy available at temperatures below 40 K is much too low to overcome the calculated barrier of 12.8 kcal/mol for the rearrangement of 3v back to lv, and consequently 3v is stable under the conditions of matrix isolation. [Pg.197]


See other pages where Activation barrier bond energies is mentioned: [Pg.306]    [Pg.632]    [Pg.19]    [Pg.56]    [Pg.141]    [Pg.178]    [Pg.3]    [Pg.5]    [Pg.1101]    [Pg.26]    [Pg.120]    [Pg.253]    [Pg.256]    [Pg.257]    [Pg.346]    [Pg.181]    [Pg.34]    [Pg.58]    [Pg.66]    [Pg.66]    [Pg.153]    [Pg.289]    [Pg.547]    [Pg.549]    [Pg.551]    [Pg.553]    [Pg.180]    [Pg.187]    [Pg.342]    [Pg.254]    [Pg.272]    [Pg.573]    [Pg.274]    [Pg.2]    [Pg.96]    [Pg.274]    [Pg.70]   
See also in sourсe #XX -- [ Pg.133 ]




SEARCH



Activation barrier

Activation energy barrier

Activation energy bonds

Barrier Bonding

Energy barriers

© 2024 chempedia.info