Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylic monomers Acrylonitrile

Poly(vinyhdene chloride) (PVDC) film has exceUent barrier properties, among the best of the common films (see Barrier polymers). It is formulated and processed into a flexible film with cling and tacky properties that make it a useful wrap for leftovers and other household uses. As a component in coatings or laminates it provides barrier properties to other film stmctures. The vinyUdene chloride is copolymerized with vinyl chloride, alkyl acrylates, and acrylonitrile to get the optimum processibUity and end use properties (see Vinylidene chloride monomer and polymers). [Pg.378]

Fig. 2. Relationship between relative rate and monomer composition in the copolymerization of DAP with vinyl monomers A, styrene or methyl methacrylate B, methyl acrylate or acrylonitrile C, vinyl chloride D, vinyl acetate, and E, ethylene (41). Fig. 2. Relationship between relative rate and monomer composition in the copolymerization of DAP with vinyl monomers A, styrene or methyl methacrylate B, methyl acrylate or acrylonitrile C, vinyl chloride D, vinyl acetate, and E, ethylene (41).
The homopolymers, which are formed from alkyl cyanoacrylate monomers, are inherently brittle. For applications which require a toughened adhesive, rubbers or elastomers can be added to improve toughness, without a substantial loss of adhesion. The rubbers and elastomers which have been used for toughening, include ethylene/acrylate copolymers, acrylonitrile/butadiene/styrene (ABS) copolymers, and methacrylate/butadiene/styrene (MBS) copolymers. In general, the toughening agents are incorporated into the adhesive at 5-20 wt.% of the monomer. [Pg.857]

Free radical polymerization is a key method used by the polymer industry to produce a wide range of polymers [37]. It is used for the addition polymerization of vinyl monomers including styrene, vinyl acetate, tetrafluoroethylene, methacrylates, acrylates, (meth)acrylonitrile, (meth)acrylamides, etc. in bulk, solution, and aqueous processes. The chemistry is easy to exploit and is tolerant to many functional groups and impurities. [Pg.324]

A substantial number of photo-induced charge transfer polymerizations have been known to proceed through N-vinylcarbazole (VCZ) as an electron-donor monomer, but much less attention was paid to the polymerization of acrylic monomer as an electron receptor in the presence of amine as donor. The photo-induced charge-transfer polymerization of electron-attracting monomers, such as methyl acrylate(MA) and acrylonitrile (AN), have been recently studied [4]. In this paper, some results of our research on the reaction mechanism of vinyl polymerization with amine in redox and photo-induced charge transfer initiation systems are reviewed. [Pg.227]

Iwai and coworkers [56] have introduced a novel type of multicomponent photoinitiating system for water-soluble monomer (acrylamide, acrylic acid, acrylonitrile, etc). [Pg.252]

Polymers in Schemes 12 and 13 were the first examples of the preparation of pyridinium and iminopyridinium ylide polymers. One of the more recent contributions of Kondo and his colleagues [16] deals with the sensitization effect of l-ethoxycarbonyliminopyridinium ylide (IPYY) (Scheme 14) on the photopolymerization of vinyl monomers. Only acrylic monomers such as MMA and methyl acrylate (MA) were photoinitiated by IPYY, while vinylacetate (VA), acrylonitrile (AN), and styrene were unaffected by the initiator used. A free radical mechanism was confirmed by a kinetic study. The complex of IPYY and MMA was defined as an exciplex that served as a precursor of the initiating radical. This ylide is unique in being stabilized by the participation of a... [Pg.375]

COCH3 >—CN >—COOR >—Cl >—CH2Y >—OCOCH3 >—OR. The effect of a second 1-substituent is roughly additive. 2-Chlorobutadiene and 2,3-dichlorobutadiene [not included in Table XX] are the most reactive monomers examined. A methyl group usually increases reactivity (methyl methacrylate >methyl acrylate, methacrylonitrile > acrylonitrile, methal-lyl>allyl derivatives) and two chlorine atoms are nearly as effective as a carbalkoxy group. [Pg.190]

There are two pathways for the degradation of nitriles (a) direct formation of carboxylic acids by the activity of a nitrilase, for example, in Bacillus sp. strain OxB-1 and P. syringae B728a (b) hydration to amides followed by hydrolysis, for example, in P. chlororaphis (Oinuma et al. 2003). The monomer acrylonitrile occurs in wastewater from the production of polyacrylonitrile (PAN), and is hydrolyzed by bacteria to acrylate by the combined activity of a nitrilase (hydratase) and an amidase. Acrylate is then degraded by hydration to either lactate or P-hydroxypropionate. The nitrilase or amidase is also capable of hydrolyzing the nitrile group in a number of other nitriles (Robertson et al. 2004) including PAN (Tauber et al. 2000). [Pg.322]

The formation of the hydrogen bond between hydroperoxide and polar monomer, for example, methyl acrylate or acrylonitrile, does not influence the rate constant of the reaction of hydroperoxide with the double bond of monomer [101]. The values of the rate constants of the reaction of hydroperoxide with olefins are given in Table 4.13. The effect of multidipole interaction was observed for reactions of hydroperoxide with polyfunctional monomers (see Table 4.14, Ais the Gibbs energy of multidipole interaction in the transition state). [Pg.185]

Significant improvement in controlled polymerizations of a variety monomers, including styrene, acrylates, acrylamide, acrylonitrile, 1,3-dienes, and maleic anhydride has been achieved when alkoxyamines have been used as initiators for living, free radical polymerization.(696c, 697) Alkoxyamines can be easily synthesized in situ by the double addition of free radicals, generated by thermal decomposition of an azo-initiator, such as 2,2 -azo-h/.s-/.so-butyronitrile (AIBN), to nitrones (Scheme 2.206). [Pg.295]

Radiation Induced Reactions. Graft polymers have been prepared from poly(vinyl alcohol) by the irradiation of the polymer-monomer system and some other methods. The grafted side chains reported include acrylamide, acrylic acid, acrylonitrile, ethyl acrylate, ethylene, ethyl methacrylate, methyl methacrylate, styrene, vinyl acetate, vinyl chloride, vinyl pyridine and vinyl pyrrolidone (13). Poly(vinyl alcohols) with grafted methyl methacrylate and sometimes methyl acrylate have been studied as membranes for hemodialysis (14). Graft polymers consisting of 50% poly(vinyl alcohol), 25% poly(vinyl acetate) and 25% grafted ethylene oxide units can be used to prepare capsule cases for drugs which do not require any additional plasticizers (15). [Pg.84]

List C contains peroxidisable monomers, where the presence of peroxide may initiate exothermic polymerisation of the bulk of material. Precautions and procedures for storage and use of monomers with or without the presence of inhibitors are discussed in detail. Examples cited are acrylic acid, acrylonitrile, butadiene, 2-chlorobutadiene, chlorotrifluoroethylene, methyl methacrylate, styrene, tetraflu-oroethylene, vinyl acetate, vinylacetylene, vinyl chloride, vinylidene chloride and vinylpyridine [1]. [Pg.328]

Bell, 1989 Rhee and Bell, 1991), random copolymers of methyl acrylate and acrylonitrile were directly polymerized onto the carbon fiber surface. Dimethyl formamide, dimethyl sulfoxide and distilled water proved to be useful as solvents for this process. Polymerization can take place on the carbon fiber electrode, with initial wetting of the fiber surface leading to better adhesion of the polymer formed. The structure and properties of the polymer can be varied by employing different vinyl and cyclic monomers in homopolymerization. Chemical bond can also be formed, such as polymer grafting to the carbon fiber surface. [Pg.295]

Monomers which can add to their own radicals are capable of copolymerizing with SO2 to give products of variable composition. These include styrene and ring-substituted styrenes (but not a-methylstyrene), vinyl acetate, vinyl bromide, vinyl chloride, and vinyl floride, acrylamide (but not N-substituted acrylamides) and allyl esters. Methyl methacrylate, acrylic acid, acrylates, and acrylonitrile do not copolymerize and in fact can be homopolymer-ized in SO2 as solvent. Dienes such as butadiene and 2-chloro-butadiene do copolymerize, and we will be concerned with the latter cortpound in this discussion. [Pg.2]

The Wittig-Horner (W-H) reaction is a versatile method for the synthesis of functionalized alkenes. The synthesis of 3-substituted ethyl acrylates and acrylonitriles, which are used as monomers in polymerization, were successfully carried out by the reaction of triethyl phosphonoacetate or cyanomethanephosphonate, respectively, with various aldehydes with activated Ba(OH)2 as the catalyst in the presence of dioxane solvent at 343 K (294). As was observed for other basic solid... [Pg.291]

The susceptibility order of monomers to mechanosynthesis (acrylic acid > acrylonitrile > methacrylamide > acenaphthylene > maleic anhydride) is consistent with related chemistry. Maleic anhydride, which has the lowest susceptibility and is not homopolymerizable, probably combines as a single monomer unit... [Pg.14]

Various Ln amides have already been described in Sections 4.3.5 and 4.3.6 as catalysts for polymerisation of ethylene," I38,i4i i43 jjex-l-ene, isoprene,styrene, " methyl methacrylate or other polar monomers such as t-butyl acrylate or acrylonitrile, . 138,143,152,177 nng-opening polymerisation catalysts for e-caprolactone or... [Pg.110]

Figure 12.1 Monomers used for Acrylate/Styrene/Acrylonitrile Polymers... Figure 12.1 Monomers used for Acrylate/Styrene/Acrylonitrile Polymers...
The vinyl monomers used in this study, methacrylic acid, methyl methacrylate, acrylic acid, methyl acrylate, and acrylonitrile, as well as the solvents, initiators, and polystyrene were supplied by the Aldrich Chemical Company. The styrene-butadiene block copolymer was supplied by Shell as Kraton D1102, known as SBS this contains approximately 75% butadiene and 25% styrene. [Pg.111]

Emulsion polymers - [POLYMERS] (Vol 19) -acrylic elastomers [ELASTOMERS, SYNTHETIC - ACRYLICELASTOMERS] (Vol 8) -of acrylic monomers [ACRYLIC ESTER POLYMERS - SURVEY] (Vol 1) -of acrylonitrile [ACRYLONITRILE POLYMERS - SURVEY AND SAN (STYRENE-ACRYLONITRILECO-POLYMERS)] (Vol 1) -of methacrylic monomers [METHACRYLIC POLYMERS] (Vol 16) -nitrile rubber by [ELASTOMERS, SYNTHETIC - NITRILE RUBBER] (Vol 8) -of styrene/butadiene [STYRENE-BUTADIENERUBBER] (Vol 22) -synthetic rubber by [ELASTOMERS, SYNTHETIC - SURVEY] (Vol 8) -ofVDF [FLUORINECOMPOUNDS,ORGANIC-POLY(VINYLIDENE FLUORIDE)] (Volll) -for medical diagnostic reagents [MEDICAL DIAGNOSTIC REAGENTS] (Vol 16)... [Pg.361]

Copolymers. Vinyl acetate copolymenzes easily with a few monomers, e g, ethylene, vinyl chloride, and vinyl neodecanoate, which have reactivity ratios close to its own. Block copolymers of vinyl acetate with methyl methacrylate, acrylic acid, acrylonitrile, and vinyl pyrrolidinone have been prepared by copolymerization in viscous conditions, with solvents that are poor solvents for the vinyl acetate macroradical,... [Pg.1678]

During this work we have studied the structure of products obtained from the polymerization of a mixture of butadiene and an acrylic monomer on a PVC latex. More particularly we have studied polymers by fractionation in solution and we describe this here for the specific case of systems of PVC-butadiene acrylonitrile. [Pg.291]

The butadiene and butadiene-acrylic monomer systems polymerize when irradiated on PVC or vinyl chloride copolymer latex. The structure of the polymer obtained may be grafted if it can be proved that the copolymer properties are different from the blend properties. To elucidate the structure we studied a copolymer obtained by polymerizing butadiene-acrylonitrile on a PVC homopolymer lattice. Owing to practical reasons and to exclude the secondary effect of catalytic residues we used y radiation. However, we shall observe in a particular case the properties of peroxide-initiated graft copolymer. [Pg.291]


See other pages where Acrylic monomers Acrylonitrile is mentioned: [Pg.3]    [Pg.417]    [Pg.422]    [Pg.164]    [Pg.151]    [Pg.205]    [Pg.30]    [Pg.11]    [Pg.459]    [Pg.50]    [Pg.416]    [Pg.397]    [Pg.237]    [Pg.319]    [Pg.610]    [Pg.48]    [Pg.102]    [Pg.123]    [Pg.124]    [Pg.18]    [Pg.20]    [Pg.192]   
See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Acrylic monomer

Acrylonitrile monomer

© 2024 chempedia.info