Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylates reaction with amides

The amide group is readily hydrolyzed to acrylic acid, and this reaction is kinetically faster in base than in acid solutions (5,32,33). However, hydrolysis of N-alkyl derivatives proceeds at slower rates. The presence of an electron-with-drawing group on nitrogen not only facilitates hydrolysis but also affects the polymerization behavior of these derivatives (34,35). With concentrated sulfuric acid, acrylamide forms acrylamide sulfate salt, the intermediate of the former sulfuric acid process for producing acrylamide commercially. Further reaction of the salt with alcohols produces acrylate esters (5). In strongly alkaline anhydrous solutions a potassium salt can be formed by reaction with potassium / /-butoxide in tert-huty alcohol at room temperature (36). [Pg.134]

Co-adsorption experiments show a complex role of the nature and concentration of chemisorbed ammonia species. Ammonia is not only one of the reactants for the synthesis of acrylonitrile, but also reaction with Br()>nsted sites inhibits their reactivity. In particular, IR experiments show that two pathways of reaction are possible from chemisorbed propylene (i) to acetone via isopropoxylate intermediate or (ii) to acrolein via allyl alcoholate intermediate. The first reaction occurs preferentially at lower temperatures and in the presence of hydroxyl groups. When their reactivity is blocked by the faster reaction with ammonia, the second pathway of reaction becomes preferential. The first pathway of reaction is responsible for a degradative pathway, because acetone further transform to an acetate species with carbon chain breakage. Ammonia as NH4 reacts faster with acrylate species (formed by transformation of the acrolein intermediate) to give an acrylamide intermediate. At higher temperatures the amide may be transformed to acrylonitrile, but when Brreform ammonia and free, weakly bonded, acrylic acid. The latter easily decarboxylate forming carbon oxides. [Pg.285]

The presence of the propionamide fragment in the stmcture of the anti-inflammatory agent broperamole (125-1) is reminiscent of the heterocycle-based NSAID propionic acids. The activity of this agent may trace back to the acid that would result on hydrolysis of the amide. Tetrazoles are virtually always prepared by reaction of a nitrile with hydrazoic acid or, more commonly, sodium azide in the presence of acid in a reaction very analogous to a 1,3-dipolar cycloaddition. A more recent (and safer) version of the reaction noted later (see losartan, 77-4) uses tributyltin azide. In the case at hand, reaction of the anion of mefa-bromobenzonitrile (125-1) with sodium azide and an acid affords the tetrazole (125-2). Condensation of the anion from that intermediate with ethyl acrylate leads to the product from Michael addition saponiflcation gives the corresponding carboxylic acid (125-3). This is then converted to the acid chloride reaction with piperidine affords broperamole (125-4) [136]. [Pg.313]

Fig (19) Octalin ketal (163) is converted to kete dithioacetal (164) by the cleavage of ketal function and condensation with carbon disulfide and methyl iodide. Subjection of (164) to the action of dimethylsulfonium niethylide and acid hydrolysis leads to the formation of unsaturated lactone (165).lts furan silyl ether derivative is caused to undergo Diets-Atder reaction with methyl acrylate to obtain salicyctic ester (166) which is converted by standard organic reactions toabietane ether (167). It is converted to aiiylic alcohol (168) by epoxidation and elimination. Alcohol (169) obtained from (168) yields orthoamide which undergoes transformation to amide (170). Its conversion to the previously reported intermediate has been achieved by epoxidation, elimination and hydrolysis. [Pg.206]

Amides. Reaction of acrylic acid with ammonia or primary or secondary amines forms amides. However, acrylamide (qv) is better prepared by... [Pg.150]

Caddick [19] has reported the use of a novel polymer-supported tetra-fluorophenol-Unked acrylate as an activated acceptor for intermolecular radical reactions. Treatment of immobiUzed acrylate 132 with a variety of alkyl iodides in the presence of tributyltin hydride and AIBN gave the corresponding esters 133 (Scheme 29). NucleophiUc cleavage using amines gave amides 134 in good overall yield whilst regenerating phenol resin 131. [Pg.110]

Interestingly, the reaction with acryl amide and benzoquinone in the presence of mineral acid affords the diaminocyclopropenium compounds (42) and 43), respectively (Eqs. 25, 26). [Pg.71]

Conditions for the intermolecular aza-double Michael reaction of acrylamides leading to functionalized 2-piperidones have been developed, as exemplified by the conversion of 225 to 226. Of particular interest was the use of a cross reaction of amide 227 with methyl acrylate to give 228. This 2-piperidone was readily converted to (+)-paroxetine 229 (Scheme 66) <05JOC3957>. [Pg.339]

Amide and imide enolates. Scheme 5.31 illustrates several examples of asymmetric Michael additions of chiral amide and imide enolates. Yamaguchi [163] investigated the addition of amide lithium enolates to -ethyl crotonate, but found no consistent topicity trend for achiral amides. The three chiral amides tested are illustrated in Scheme 5.31a-c. The highest diastereoselectivity found was with the C2-symmetric amide shown in Scheme 5.3Ic. Evans s imides, as their titanium enolates, afforded the results shown in Scheme 5.31d and e [164,165]. The yields and selectivities for the reaction with acrylates and vinyl ketones are excellent, but the reaction is limited to P-unsubstituted Michael acceptors P-substituted esters and nitriles do not react, and 3-substituted enones add with no selectivity [165]. [Pg.201]


See other pages where Acrylates reaction with amides is mentioned: [Pg.746]    [Pg.483]    [Pg.25]    [Pg.116]    [Pg.119]    [Pg.505]    [Pg.190]    [Pg.322]    [Pg.333]    [Pg.137]    [Pg.303]    [Pg.429]    [Pg.187]    [Pg.525]    [Pg.21]    [Pg.30]    [Pg.74]    [Pg.356]    [Pg.207]    [Pg.623]    [Pg.525]    [Pg.268]    [Pg.27]    [Pg.382]    [Pg.48]    [Pg.463]    [Pg.93]    [Pg.343]    [Pg.207]    [Pg.165]    [Pg.46]    [Pg.54]    [Pg.28]    [Pg.30]    [Pg.149]   
See also in sourсe #XX -- [ Pg.244 ]




SEARCH



Acryl amide

Acrylate reaction

Acrylic amide

Amidating reaction

Amidation reactions

Amide Reaction

Reaction with amides

© 2024 chempedia.info